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ABSTRACT
Hydrologic modeling allows the simulation of runoff and sediment processes, which are applied 
in integrated watershed management, soil and water nutrients, among others. However, these 
models require considerable amounts of input data. Sediment data is often lacking in quantity 
and quality, which leads to uncertainty in hydrological models. The objective of the present 
study was to propose a methodological alternative based on sediment time series in the Santa 
Cruz de Aquismón sub-basin, San Luis Potosí, Mexico, by means of autoregressive integrated 
moving average models (ARIMA) and the Soil and Water Assessment Tool (SWAT) model. The 
SWAT model was calibrated and validated with measured flows from the National Surface 
Water Data Bank (BANDAS) of station 26 241 (Ballesmi). Model calibration and validation 
performance was assessed with Nash-Sutcliffe Coefficient (NSE), percent bias (PBIAS), and the 
root mean squared error (RMSE). The SWAT model fit was rated as very good. The hydrologic 
model results were compared to the daily sediment estimates from three months in 1985 (June, 
September, and November) obtained from ARIMA models. The mean absolute percent error 
(MAPE) was 0.571, 0.168, and 0.029, respectively. The results indicated that the use of the 
ARIMA model for sediment estimation is useful when there are short time series with limited 
information, since it allows the completion of missing data series or short-term estimates.
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INTRODUCTION
Sediment assessment by modeling is used in studies to understand the structure, 
function, or problems in watershed management. It is also used to model runoff and 
erosion, as well as to estimate the influence of land use and climate change on the 
hydrologic balance. To improve sediment assessment, it is necessary to implement 
methodologies using approaches such as parameter optimization, operational 
management, and spatial distribution, among others (Song et al., 2015). However, 
their application depends on the quantity and quality of available data, which must be 
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free of missing values and consistent in magnitude. In case of having missing values, 
some methodologies cannot be applied, decreasing the analysis options. Regarding 
the magnitudes, the results obtained should be verified to ensure homogeneity in the 
data. 
One of the most widely used models at the global level is the Soil and Water Assessment 
Tool (SWAT) model, which includes a hydrological module for sediment, nutrients, 
crop growth, and agricultural practices, and allows the analysis of ecosystem services 
(Shujiang et al., 2020). One disadvantage of this model is the amount of complete input 
data required, which affects the quality of the results and makes runoff and sediment 
validation necessary. 
In Mexico, most of the hydrometric stations provide incomplete daily data on runoff 
and sediment, which make it difficult to make decisions focused on watershed 
problems, erosion, and agriculture, among others, so methodologies are needed to 
correct the missing data. There is a great diversity of methods for estimating missing 
data on runoff, but few on sediment, which is often a limitation in the construction 
of a physical model such as SWAT. Therefore, the models mostly used in hydrology 
to estimate univariate time series are the ARIMA models, usually applied in the 
calculation of streamflow (Wong et al., 2007). 
Rivera-Toral et al. (2012) analyzed the performance of the SWAT model for estimating 
erosion in watersheds in Mexico and concluded that it is adequate, but emphasized 
the topographic factor (LS) with an independent calculation and a correction for 
slopes greater than 25 % without performing a sediment calibration due to lack of 
data. Salas-Martínez et al. (2014) and Sánchez-Galindo et al. (2017) used the SWAT 
hydrological model for biomass, runoff, and sediment prediction. This resulted 
in acceptable estimates, calibrated and validated with information from BANDAS, 
although they highlighted the reduced quantity and quality of the measurements. In 
recent years, Salas-Aguilar and Paz-Pellat (2018) generated a base with hydrological 
and physiographic data for sediment estimation in sub-basins in Mexico to address 
the problem that existing information presents a series of drawbacks regarding data 
uncertainty, gaps in the time series, and difficult access, so they synthesized the 
information of gauged basins so that any researcher could have access.
In this study, a methodology was proposed to estimate missing data in daily sediment 
time series using the historical record of the same station. The methodology was 
applied to the sediment transport of the Santa Cruz de Aquismón sub-basin, San 
Luis Potosí, Mexico. For this purpose, a model was built by means of SWAT, which 
considered the vegetation of 1985. After the calibration and validation of the model, 
the historical daily sediment data of the station were used to elaborate the ARIMAS 
for three months.

MATERIALS AND METHODS

Study area
This study was conducted in the Santa Cruz de Aquismón sub-basin, located in the 
municipalities of Aquismón, Ciudad Valles, Tanlajás, and Tancanhuitz in the Huasteca 
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region of the state of San Luis Potosí, Mexico. The study area is located in the priority 
watershed defined by SEMARNAT as the confluence of the Huastecas, which covers 
an area of 27 650.50 km2 and belongs to the hydrological region of the Pánuco River 
(Figure 1).
The Santa Cruz de Aquismón sub-basin was mapped using a Digital Elevation Model 
(DEM) downloaded from the Alos Parsar satellite, which has an area of 329.39 km2 
and is located within the Sierra Madre Oriental Physiographic Province, made up 
of folded Mesozoic sedimentary rocks where tectonic features and morphoclimatic 
changes have been determinant (Palacio-Aponte and Julio-Miranda, 2018). Most of the 
sub-basin area is located within the physiographic sub-province called Huasteco karst 
and corresponds to a tropical mountain range karst, and a smaller area corresponds to 
the Plains and Lomerios sub-province.
The predominant climate, according to the Köppen classification modified by 
García, is warm-humid A(f), with an average annual temperature higher than 18 °C, 
precipitation in the driest month is 40 mm, and average annual precipitation varies 
between 500 and 3000 mm (García, 2004). 
INEGI’s soil and vegetation charts indicate that the predominant soils are eutrophic 
vertisols and calcic leptosols, which are highly erodible. The natural vegetation in 
the sub-basin is in various stages of plant succession and is dominated by secondary 

Figure 1. Location and elevation of the Santa Cruz de Aquismón sub-basin, San Luis Potosí, 
Mexico.
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evergreen forest vegetation and secondary shrubby medium sub evergreen forest 
vegetation. In terms of land use, cultivated pastures predominate, followed by 
irrigated and rainfed agriculture. It is worth mentioning that the Huasteca region 
has experienced notable changes in land cover and land use, which have led to the 
alteration and reduction of the characteristic rainforest ecosystems (Reyes-Hernández 
et al., 2006).

SWAT model application

Data base
The runoff and sediment model for the sub-basin was constructed from open access 
data. For daily precipitation, 11 meteorological stations obtained through the ERIC 
v 1.0 GIS platform were analyzed. Flow and sediment data were extracted from 
BANDAS, specifically from hydrometric station 26 241 at the outlet of the Ballesmi sub-
basin (BANDAS, 2017). Finally, the natural vegetation in the sub-basin was obtained 
using a Landsat satellite image from 1985 with atmospheric correction corresponding 
to the dry period (February), to minimize the classification error due to the annual 
vegetation greenness present during the rainy season and low cloud cover. 
ArcGIS 10.3 software with the ArcSWAT 2012 extension was used for runoff and 
sediment analysis. The simulation period was from March to December 1985 because 
this year has sufficient sediment and runoff data to evaluate this period; it is important 
to note that there is only sediment information from 1960 to 1997, and the months of 
January and February were discarded due to a lack of precipitation data. Since each 
climatological station analyzed contains daily data that influence a specific area of the 
sub-basin, Thiessen polygons were calculated to obtain the mean daily precipitation 
for the months of March to September for calibration and the rest for validation. 
The first 15 days of simulation were used as a model stabilization period and were 
excluded from the analysis. Runoff and sediment measurements in the sub-basin are 
limited by the amount of daily data available and the number of hydrometric stations. 
Therefore, calibration and validation were only performed with daily runoff data for 
the simulation period described above.

Runoff calibration and validation
The model was evaluated using the Nash-Sutcliffe efficiency coefficient (NSE), the 
percentage bias (PBIAS), and the root mean square error (RMSE). The NSE describes the 
deviation of the radius of the squared difference between the observed and simulated 
values and the variance of the observations. The value of this coefficient varies from 
-∞ to 1, with -∞ being a very low fit to the point of being considered unacceptable 
and unity a perfect fit (Equation 1). The PBIAS measures the average tendency of the 
simulated values to overestimate (positive sign) or underestimate (negative sign) the 
observed data, with 0 being the perfect fit value (Equation 2). The RMSE measures the 
average error magnitude, i.e., it is the representation of the data around a line with the 
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best possible fit, increasing with the variance of the error magnitudes (Equation 3) (da 
Silva et al., 2015).
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where: i is the position of the time series in pairs of measured and simulated data, n 
the number of even data, Oi the observed data at a given time position, Si the simulated 
data at a given time position, and O is the mean of the observed data. [SRF1]

ARIMA models
There are several approaches to perform estimations that include moving averages 
and exponential smoothing, among which ARIMA stands out for its simplicity 
in understanding and application. ARIMA models are used to analyze stationary 
data series, based on the assumption that they follow a normal distribution and are 
limited by the linearity of the method. To improve this limitation, nonlinear stochastic 
models such as the ARIMA (p,d,q) have been proposed, where p corresponds to the 
autoregressive (AR), d is the differencing of the data, and q is the moving average 
(MA) (Box and Jenkins,1976; Akhter et al., 2019). One issue with the use of ARIMAS is 
the subjective order selection process. For this reason, Hyndman et al. (2020) include 
the Akaike Information Criterion (AIC) (Equation 4) in the Rstudio Forecast library to 
find these orders while taking into account the smallest possible data differentiation.

AIC = - 2 log (L) + 2 (p + q + P + Q + k)	 (4)

where: k=1 if c≠0 and 0 otherwise, L is the maximized likelihood of the model fitted to 
the differenced data; P and Q is the order for stationary processes (Aguado-Rodríguez 
et al., 2016).

Sediment estimation with ARIMA
In this study, the daily sediment data obtained through modeling were used as a 
basis and compared to the ARIMAS calculated through the Rstudio program with 
the Forecast package (Hyndman et al., 2020). Three 30-day data series were analyzed 
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for the year 1985 because this year has sufficient information for analysis and years 
after 1997 have a data deficit. The three series correspond to the beginning (June) 
and the end of the rainy season (September), and a cold dry season (November), The 
appropriate ARIMA function was calculated and plotted for each month. Once the 
ARIMA model was obtained, the estimation was performed for 10 days and the results 
were compared to the modeling data. Similar to the validation of the SWAT model, 
statistical criteria were used as proposed by Hyndman and Koehler (2006), and the 
RMSE and the mean absolute percentage error (MAPE) were calculated (Equation 5), 
since they are the most commonly used in time series.

MAPE = n
1

Oi
Si - OiQ W

i = 1

n/ # 100
	 (5)

RESULTS AND DISCUSSION

Calibration and validation of the SWAT model
Hydrological runoff models have different physical conditions depending on the 
region analyzed and the amount of data (for the validation and calibration processes), 
all of which generates uncertainty in basins that are not gauged or have a deficit of 
information. In this part of the work, the model calibration was performed for the 
period from March to May 1985 (Figure 2A) using modifications in the Curve Number 
(NC). These modifications were applied in a range of ±7 % with a minimum value 
of -6.8 % for the shrubby secondary vegetation of medium sub evergreen forest. 
The results obtained for calibration showed that the model is considered very good, 
since the NSE is 0.77, the PBIAS is 0.14, and the RMSE is less than half the standard 
deviation of 0.39. As for the validation, the analysis period from June to December 
1985 (Figure 2B) showed that the model is also considered very good, with NSE values 
of 0.77, PBIAS of -2.85, and RMSE of 0.45. The very good values in the calibration and 
validation processes agree with SWAT runoff models in Mexico elaborated by authors 
such as Sánchez-Galindo et al. (2017) and Nevárez-Favela et al. (2021).

Sediments
As mentioned above, the lack of daily sediment data at the hydrometric station is a 
limitation since recording is made on a monthly and annual basis. This agrees with 
what was reported by Cruz-Arévalo et al. (2021), where the calibration of the SWAT 
model could not be performed due to the lack of sediment data in the Chapingo 
River basin, and concluded that this condition can generate unsatisfactory results 
that influence its reliability. In this model, the total annual sediment recording was 
used, since the monthly record for January and February showed sediment loads of 0 
Mg, which implies that precipitation in these months was not intense or long-lasting 
enough to show considerable or measurable erosion in the sub-basin. Therefore, the 
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annual erosion observed, according to the BANDAS database, was 20 200 m3, which 
when affected by the relative density of the sediment, namely 1.1 Mg m-3 corresponding 
to clay soils (DOF, 2002), resulted in a measured sediment production of 22 220 Mg 
and that obtained with the model was 16 774. 94 Mg; that is, the model underestimates 
erosion by 5 445.06 Mg, which corresponds to 25.50 % of that observed.

Sediment estimation (ARIMA)
ARIMAS, in the field of hydrology and meteorology, has been applied in drought 
prediction, runoff coefficient determination, river flow harnessing (Thi-Thu-Hong 
and Nguyen, 2020), sediment concentration assessment (Rajaee and Jafari, 2020), and 
prediction of meteorological variables (Aguado-Rodríguez et al., 2016), among others. 
This work focused on exploring the use of ARIMAS for sediment transport series in a 

Figure 2. Comparison between observed and simulated runoff with the SWAT model in the 
Santa Cruz de Aquismón subwatershed, San Luis Potosí, Mexico. A: Calibration period (March-
May). B: Validation period (June-December).
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short period of time, a month, and opening up the possibility of completing historical 
time series or field measurements of a point of interest such as the same hydrometric 
station. 
The first data estimation corresponding to the month of June was obtained from an 
ARIMA (5,1,0) with five autoregressives, one difference, and zero moving averages. 
An RMSE of 109.26 was obtained, which is greater than half the standard deviation, 
a PBIAS of -15.46, and a MAPE of 0.571, which indicated that the estimate is between 
good and unsatisfactory (Table 1, Figure 3A). This is due to the variability of the SWAT 
data, especially the last values, where there is an increase with respect to the first 
values, resulting in estimates with magnitudes different from those expected. This is 
consistent with Mora and Reyes (2013), who mention that the trend of the data defines 
the behavior of the ARIMA and the most intense fluctuations must be eliminated to 
regulate the results. 
For the second series, the ARIMA (2,2,1) with two autoregressives, two differences, 
and a moving average corresponding to the month of September, RMSE values of 
7.95 were obtained, which is greater than half the standard deviation, PBIAS of 16.02, 
and MAPE of 0.168, which indicated a better fit of the data, but still not a satisfactory 

Table 1. SWAT, ARIMA values and 95 % confidence intervals (IC) in Mg ha-1 for the months of June 
(Jun), September (Sep), and November (Nov).

DAY 1 2 3 4 5 6 7 8 9 10

SWAT 
Jun. 77.68 71.85 63.43 75.40 64.41 60.50 395.20 276.90 181.10 128.00

ARIMA
Jun. 83.70 120.75 152.69 134.03 105.16 91.35 111.60 136.40 130.88 112.27

IC Low 
95 -68.32 -88.48 -83.73 -117.47 -154.7 -206.7 -223.4 -222.9 -244.3 -273.1

IC High 
95 235.72 329.56 389.12 385.53 365.09 389.41 446.57 495.73 506.02 497.6

SWAT 
Sep. 44.01 44.61 42.88 41.08 48.61 42.91 41.33 38.48 37.77 35.88

ARIMA
Sep. 44.91 42.33 40.23 38.34 35.99 34.03 31.88 29.74 27.68 25.53

IC Low 
95 37.02 28.09 18.68 7.51 -4.39 -17.07 -30.72 -44.99 -60.02 -75.72

IC High
 95 52.81 56.57 61.79 69.17 76.37 85.13 94.47 104.48 115.38 126.78

SWAT 
Nov. 9.95 9.64 9.32 8.98 8.82 8.57 8.48 8.25 8.13 7.88

ARIMA
Nov. 9.58 9.59 9.32 9.10 8.98 8.89 8.76 8.63 8.49 8.36

IC Low 
95 -10.81 -15.81 -18.54 -21.38 -24.38 -27.96 -31.00 -33.90 -36.76 -39.59

IC High
 95 29.98 34.98 37.19 39.59 42.64 45.74 48.39 51.16 53.74 56.31
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Figure 3. Comparison of SWAT values vs ARIMA forecast and 95 % confidence intervals (IC). A: 
ARIMA (5,1,0) of the first 10 days of June; B: ARIMA (2,2,1) of the first 10 days of September; C: 
ARIMA (2,2,3) of the first 10 days of November.
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estimate for the RMSE. In this series, the estimates do not exceed the maximum and 
remain in a range with the SWAT values (Table 1, Figure 3B), which allows modeling 
possible maximum and minimum events, as suggested by Amaris et al. (2017), which 
allowed the calculation of annual runoff volumes.
Finally, the ARIMA (2,2,3) with two autoregressives, two differences, and three moving 
averages for the month of November, presented the best fit of the three months, with 
RMSE values of 0.293 which is less than half the standard deviation, PBIAS of -1.93, 
and MAPE of 0.029, and was satisfactory for each of the statistics. In this third series, 
the estimates result in values with a close approximation to those obtained with SWAT 
(Table 1, Figure 3C). As mentioned by Amaris et al. (2017), an adequate fit among the 
results is of utmost importance, since the estimates can be used to identify or forecast 
the variation of water resources and their behavior over short time periods.
The results show that the variability of the time series is the main limitation of the 
estimation; months with higher variability, such as June, are complicated to analyze. 
However, in seasons with lower variability and a clear trend, either positive or 
negative, the estimates can present minimal errors, as was the case in November. This 
agrees with the findings by Montari et al. (2000), who mentioned that in short periods 
of one month, the predicted data are satisfactorily approximate, but this was only 
tested with runoff.

CONCLUSIONS
The use of ARIMAS in the sediment domain is a fast and efficient way to make 
estimates to complete databases. However, the results depend on the time series that 
is analyzed to produce ARIMAS, which can underestimate and overestimate sediment 
for different periods of the estimate or can be very accurately adjusted.
In this study, the simulated sediment transport is close to the observed one, but 
the lack of databases, availability of information, daily data, and uncertainty in the 
correct records were an important limitation for the model, since the corresponding 
calibration for this parameter was not performed.
Finally, if there is a deficit in the available databases or if additional information 
is required in the short term, it is possible to make sediment forecasts with SWAT 
information using ARIMAS, but with time series of little variability and a trend; 
therefore, it is recommended for short time series and where a large amount of 
information is not needed, such as completing missing data series or short-term 
estimates.

ACKNOWLEDGEMENTS
The first author is thankful for the scholarship granted by the Consejo Nacional 

de Ciencia y Tecnología (CONACyT) for his doctoral research being conducted at the 
Universidad Autónoma de San Luis Potosí.



Agrociencia 2023. DOI: https://doi.org/10.47163/agrociencia.v57i5.2433
Scientific article 11

REFERENCES
Aguado-Rodríguez GJ, Quevedo-Nolasco A, Castro-Popoca M, Arteaga-Ramírez R, Vázquez-

Peña MA, Zamora-Morales BP. 2016. Predicción de variables meteorológicas por medio de 
modelos ARIMA. Agrociencia 50 (1): 1–13.

Akhter S, Eibek KU, Islama S, Abu Reza M, Islama T, Chub R, Shuanghe S. 2019. Predicting 
spatiotemporal changes of channel morphology in the reach of Teesta River, Bangladesh 
using GIS and ARIMA modeling. Quaternary International 513: 80–94. https://doi.
org/10.1016/j.quaint.2019.01.022

Amaris G, Avila H, Guerrero T. 2017. Applying ARIMA model for annual volume time series of 
the Magdalena River. Tecnura 21: 88–101. 

BANDAS (Banco Nacional de Datos de Aguas Superficiales). 2017. SIG BANDAS v 1.0. Instituto 
Mexicano de Tecnología del Agua y Comisión Nacional del Agua. Jiutepec, México. http://
hidrosuperf.imta.mx/bandas/ (Retrieved: Noviembre 2020).

Box GEP, Jenkins GM. 1976. Time series analysis: forecasting and control. Holden-Day: San 
Francisco. CA, USA, pp: 469–471.

Cruz-Arévalo B, Gavi-Reyes F, Martínez-Menez M, Juárez-Méndez J. 2021. SWAT applied 
to surface runoff prediction. Tecnología y Ciencias del Agua 12 (2): 157–206. https://doi.
org/10.24850/J-TYCA-2021-02-04

da Silva MG, de Aguiar Netto A de O, de Jesus Neves RJ, do Vasco AN, Almeida C, Faccioli 
GG. 2015. Sensitivity analysis and calibration of hydrological modeling of the watershed 
northeast Brazil. Journal of Environmental Protection 06 (08): 837–850. https://doi.
org/10.4236/jep.2015.68076

García E. 2004. Modificaciones al sistema de clasificación Climática de Köppen (para adaptarlo 
a las condiciones de la República Mexicana) (4a edición). Larios: México.

Hyndman RJ, Athanasopoulos RG, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, Petropoulos 
F, Razbash S, Wang E, Yasmeen F. 2020. Forecast: forecasting functions for time series and 
linear models. R package version 8: 13. http://CRAN.R-project.org/package=forecast

Hyndman RJ, Koehler AB. 2006. Another look at measures of forecast accuracy. International 
Journal of Forecasting 22 (4): 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001

Montari A, Rosso R, Taqqu MS. 2000. A seasonal fractional ARIMA model applied to the Nile 
River monthly flows at Aswan. Water Resources Research 36 (5): 1249–1259. https://doi.
org/10.1029/2000WR900012

Mora B, Reyes V. 2013. Análisis de tendencias y variación anual e interanual de las precipitaciones 
(período: 1957-2006) en la cuenca del río Boconó, estado Trujillo, Venezuela. Revista de 
Investigación 37 (80): 45–68. 

Nevárez-Favela MM, Fernández-Reynoso DS, Sánchez-Cohen I, Sánchez-Galindo M, Macedo-
Cruz A, Palacios-Espinosa C. 2021. Comparison between WEAP and SWAT models in a 
basin at Oaxaca, Mexico. Tecnología y Ciencias del Agua 12 (1): 358–401. 

DOF (Diario Oficial de la Federación). 2002. Norma Oficial Mexicana NOM-021-RECNAT-2000. 
Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudio, 
muestreo y análisis. México, D. F. 

Palacio-Aponte G, Julio-Miranda P. 2018. Medio Abiótico. In Procesos territoriales, económicos y 
socioculturales de San Luis Potosí. Vázquez Solís V. (ed.). Universidad Autónoma de Sal Luís 
Potosí: San Luis Potosí, México, pp: 29–46. https://doi.org/10.22201/ciga.9786073019620e.2018

Rajaee T, Jafari H. 2020. Two decades on the artificial intelligence models advancement for 
modeling river sediment concentration: State-of-the-art. Journal of Hydrology 588: 125011. 
https://doi.org/10.1016/j.jhydrol.2020.125011

Reyes-Hernández H, Aguilar-Robledo M, Aguirre-Rivera JR, Trejo-Vázquez I. 2006. Cambios en 
la cubierta vegetal y uso del suelo en el área del proyecto Pujal-Coy, San Luis Potosí, México, 
1973-2000. Investigaciones Geográficas 59: 26–42. https://doi.org/10.14350/rig.30019

Rivera-Toral F, Pérez-Nieto S, Ibáñez-Castillo LA, Hernández-Saucedo FR. 2012. Aplicabilidad 
del modelo SWAT para la estimación de la erosión hídrica en las cuencas de México. 
Agrociencia 46 (2): 101–105.



Agrociencia 2023. DOI: https://doi.org/10.47163/agrociencia.v57i5.2433
Scientific article 12

Salas-Aguilar VM, Paz-Pellat F. 2018. Base de datos para la estimación de sedimentos en 
subcuencas de México. Elementos para Políticas Públicas 2: 85–92.

Salas-Martínez R, Ibáñez-Castillo LA, Arteaga-Ramírez R, Martínez-Menes MR, Fernández-
Reynoso DS. 2014. Modelado hidrológico de la cuenca del Río Mixteco en el Estado de 
Oaxaca, México. Agrociencia 48 (1): 1–15.

Sánchez-Galindo M, Fernández-Reynoso DS, Martínez-Menes M, Rubio-Granados E, Ríos-
Berber JD. 2017. Modelo hidrológico de la cuenca del río Sordo, Oaxaca, México, con SWAT. 
Tecnología y Ciencias del Agua 8 (5): 141–156. https://doi.org/10.24850/j-tyca-2017-05-10

Shujiang P, Xiaoyan W, Melching CS, Karl-Heinz F. 2020. Development and testing of a modified 
SWAT model based on slope condition and precipitation intensity. Journal of Hydrology 
588: 125098. https://doi.org/10.1016/j.jhydrol.2020.125098

Song X, Zhang J, Zhan C, Xuan Y, Ye M, Xu C. 2015. Global sensitivity analysis in hydrological 
modeling: Review of concepts, methods, theoretical framework, and applications. Journal of 
Hydrology 523 (225): 739–757. https://doi.org/10.1016/j.jhydrol.2015.02.013

Thi-Thu-Hong P, Nguyen XH. 2020. Combining statistical machine learning models with 
ARIMA for water level forecasting: The case of the Red river. Advances in Water Resources 
142: 103656. https://doi.org/10.1016/j.advwatres.2020.103656

Wong H, Wai-cheung I, Zhang R, Xia J. 2007. Non-parametric time series models for 
hydrological forecasting. Journal of Hydrology 332 (3–4): 337–347. https://doi.org/10.1016/j.
jhydrol.2006.07.013


