Agrociencia

SEDIMENT TRANSPORT ESTIMATION FROM HYDROLOGICAL

AND AUTOREGRESSIVE MODELS

Samuel Rodriguez-Flores', José Antonio Quevedo-Tiznado?*, Carlos Mufioz-Robles®, Patricia Julio-Miranda’

Citation: Rodriguez-Flores S,
Quevedo-Tiznado JA, Munoz-
Robles C, Julio-Miranda P.
2023. Sediment transport
estimation from hydrological
and autoregressive models.
Agrociencia. doi.org/ 10.47163/
agrociencia.v57i5.2433

Editor in Chief:
Dr. Fernando C. Gémez Merino

Received: May 21, 2021.
Approved: May 14, 2023.
Published in Agrociencia:
July 27, 2023.

This work is licensed
under a Creative Commons
Attribution-Non- Commercial
4.0 International license.

! Universidad Auténoma de San Luis Potosi. Programa Multidisciplinario de Posgrado en
Ciencias Ambientales 1. Av. Dr. Nava No. 221, Col. Lomas Los Filtros, San Luis Potosi, San
Luis Potosi, Mexico. C. P. 78210.

2 Instituto Mexicano de Tecnologia del Agua. Paseo Cuauhnahuac No. 8532, Col. Progreso,
Jiutepec, Morelos, Mexico. C. P. 62550.

* Universidad Auténoma de San Luis Potosi. Instituto de Investigacion de Zonas Desérticas.
Altair No. 200, Col. Del Llano, San Luis Potosi, San Luis Potosi, Mexico. C. P. 78377.

* Author for correspondence: jose_quevedo@tlaloc.imta.mx

ABSTRACT
Hydrologic modeling allows the simulation of runoff and sediment processes, which are applied
in integrated watershed management, soil and water nutrients, among others. However, these
models require considerable amounts of input data. Sediment data is often lacking in quantity
and quality, which leads to uncertainty in hydrological models. The objective of the present
study was to propose a methodological alternative based on sediment time series in the Santa
Cruz de Aquismoén sub-basin, San Luis Potosi, Mexico, by means of autoregressive integrated
moving average models (ARIMA) and the Soil and Water Assessment Tool (SWAT) model. The
SWAT model was calibrated and validated with measured flows from the National Surface
Water Data Bank (BANDAS) of station 26 241 (Ballesmi). Model calibration and validation
performance was assessed with Nash-Sutcliffe Coefficient (NSE), percent bias (PBIAS), and the
root mean squared error (RMSE). The SWAT model fit was rated as very good. The hydrologic
model results were compared to the daily sediment estimates from three months in 1985 (June,
September, and November) obtained from ARIMA models. The mean absolute percent error
(MAPE) was 0.571, 0.168, and 0.029, respectively. The results indicated that the use of the
ARIMA model for sediment estimation is useful when there are short time series with limited

information, since it allows the completion of missing data series or short-term estimates.

Keywords: ArcSWAT, runoff, time series, ARIMA.

INTRODUCTION
Sediment assessment by modeling is used in studies to understand the structure,
function, or problems in watershed management. It is also used to model runoff and
erosion, as well as to estimate the influence of land use and climate change on the
hydrologic balance. To improve sediment assessment, it is necessary to implement
methodologies using approaches such as parameter optimization, operational
management, and spatial distribution, among others (Song et al., 2015). However,
their application depends on the quantity and quality of available data, which must be
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free of missing values and consistent in magnitude. In case of having missing values,
some methodologies cannot be applied, decreasing the analysis options. Regarding
the magnitudes, the results obtained should be verified to ensure homogeneity in the
data.

One of the most widely used models at the global level is the Soil and Water Assessment
Tool (SWAT) model, which includes a hydrological module for sediment, nutrients,
crop growth, and agricultural practices, and allows the analysis of ecosystem services
(Shujiang et al., 2020). One disadvantage of this model is the amount of complete input
data required, which affects the quality of the results and makes runoff and sediment
validation necessary.

In Mexico, most of the hydrometric stations provide incomplete daily data on runoff
and sediment, which make it difficult to make decisions focused on watershed
problems, erosion, and agriculture, among others, so methodologies are needed to
correct the missing data. There is a great diversity of methods for estimating missing
data on runoff, but few on sediment, which is often a limitation in the construction
of a physical model such as SWAT. Therefore, the models mostly used in hydrology
to estimate univariate time series are the ARIMA models, usually applied in the
calculation of streamflow (Wong et al., 2007).

Rivera-Toral et al. (2012) analyzed the performance of the SWAT model for estimating
erosion in watersheds in Mexico and concluded that it is adequate, but emphasized
the topographic factor (LS) with an independent calculation and a correction for
slopes greater than 25 % without performing a sediment calibration due to lack of
data. Salas-Martinez ef al. (2014) and Sanchez-Galindo et al. (2017) used the SWAT
hydrological model for biomass, runoff, and sediment prediction. This resulted
in acceptable estimates, calibrated and validated with information from BANDAS,
although they highlighted the reduced quantity and quality of the measurements. In
recent years, Salas-Aguilar and Paz-Pellat (2018) generated a base with hydrological
and physiographic data for sediment estimation in sub-basins in Mexico to address
the problem that existing information presents a series of drawbacks regarding data
uncertainty, gaps in the time series, and difficult access, so they synthesized the
information of gauged basins so that any researcher could have access.

In this study, a methodology was proposed to estimate missing data in daily sediment
time series using the historical record of the same station. The methodology was
applied to the sediment transport of the Santa Cruz de Aquismén sub-basin, San
Luis Potosi, Mexico. For this purpose, a model was built by means of SWAT, which
considered the vegetation of 1985. After the calibration and validation of the model,
the historical daily sediment data of the station were used to elaborate the ARIMAS
for three months.

MATERIALS AND METHODS

Study area
This study was conducted in the Santa Cruz de Aquismoén sub-basin, located in the
municipalities of Aquismoén, Ciudad Valles, Tanlajas, and Tancanhuitz in the Huasteca
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region of the state of San Luis Potosi, Mexico. The study area is located in the priority
watershed defined by SEMARNAT as the confluence of the Huastecas, which covers
an area of 27 650.50 km? and belongs to the hydrological region of the Panuco River
(Figure 1).

The Santa Cruz de Aquismon sub-basin was mapped using a Digital Elevation Model
(DEM) downloaded from the Alos Parsar satellite, which has an area of 329.39 km?
and is located within the Sierra Madre Oriental Physiographic Province, made up
of folded Mesozoic sedimentary rocks where tectonic features and morphoclimatic
changes have been determinant (Palacio-Aponte and Julio-Miranda, 2018). Most of the
sub-basin area is located within the physiographic sub-province called Huasteco karst
and corresponds to a tropical mountain range karst, and a smaller area corresponds to
the Plains and Lomerios sub-province.

The predominant climate, according to the Koppen classification modified by
Garcia, is warm-humid A(f), with an average annual temperature higher than 18 °C,
precipitation in the driest month is 40 mm, and average annual precipitation varies
between 500 and 3000 mm (Garcia, 2004).

INEGI's soil and vegetation charts indicate that the predominant soils are eutrophic
vertisols and calcic leptosols, which are highly erodible. The natural vegetation in
the sub-basin is in various stages of plant succession and is dominated by secondary
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Figure 1. Location and elevation of the Santa Cruz de Aquismoén sub-basin, San Luis Potost,
Mexico.
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evergreen forest vegetation and secondary shrubby medium sub evergreen forest
vegetation. In terms of land use, cultivated pastures predominate, followed by
irrigated and rainfed agriculture. It is worth mentioning that the Huasteca region
has experienced notable changes in land cover and land use, which have led to the
alteration and reduction of the characteristic rainforest ecosystems (Reyes-Hernandez
et al., 2006).

SWAT model application

Data base

The runoff and sediment model for the sub-basin was constructed from open access
data. For daily precipitation, 11 meteorological stations obtained through the ERIC
v 1.0 GIS platform were analyzed. Flow and sediment data were extracted from
BANDAS, specifically from hydrometric station 26 241 at the outlet of the Ballesmi sub-
basin (BANDAS, 2017). Finally, the natural vegetation in the sub-basin was obtained
using a Landsat satellite image from 1985 with atmospheric correction corresponding
to the dry period (February), to minimize the classification error due to the annual
vegetation greenness present during the rainy season and low cloud cover.

ArcGIS 10.3 software with the ArcSWAT 2012 extension was used for runoff and
sediment analysis. The simulation period was from March to December 1985 because
this year has sufficient sediment and runoff data to evaluate this period; it is important
to note that there is only sediment information from 1960 to 1997, and the months of
January and February were discarded due to a lack of precipitation data. Since each
climatological station analyzed contains daily data that influence a specific area of the
sub-basin, Thiessen polygons were calculated to obtain the mean daily precipitation
for the months of March to September for calibration and the rest for validation.
The first 15 days of simulation were used as a model stabilization period and were
excluded from the analysis. Runoff and sediment measurements in the sub-basin are
limited by the amount of daily data available and the number of hydrometric stations.
Therefore, calibration and validation were only performed with daily runoff data for
the simulation period described above.

Runoff calibration and validation
The model was evaluated using the Nash-Sutcliffe efficiency coefficient (NSE), the
percentage bias (PBIAS), and the root mean square error (RMSE). The NSE describes the
deviation of the radius of the squared difference between the observed and simulated
values and the variance of the observations. The value of this coefficient varies from
o0 to 1, with -e= being a very low fit to the point of being considered unacceptable
and unity a perfect fit (Equation 1). The PBIAS measures the average tendency of the
simulated values to overestimate (positive sign) or underestimate (negative sign) the
observed data, with 0 being the perfect fit value (Equation 2). The RMSE measures the
average error magnitude, i.e., it is the representation of the data around a line with the
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best possible fit, increasing with the variance of the error magnitudes (Equation 3) (da
Silva et al., 2015).
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where: i is the position of the time series in pairs of measured and simulated data, n
the number of even data, O, the observed data at a given time position, S, the simulated
data at a given time position, and O is the mean of the observed data. [SRF1]

ARIMA models

There are several approaches to perform estimations that include moving averages
and exponential smoothing, among which ARIMA stands out for its simplicity
in understanding and application. ARIMA models are used to analyze stationary
data series, based on the assumption that they follow a normal distribution and are
limited by the linearity of the method. To improve this limitation, nonlinear stochastic
models such as the ARIMA (p,d,q) have been proposed, where p corresponds to the
autoregressive (AR), d is the differencing of the data, and q is the moving average
(MA) (Box and Jenkins,1976; Akhter et al., 2019). One issue with the use of ARIMAS is
the subjective order selection process. For this reason, Hyndman et al. (2020) include
the Akaike Information Criterion (AIC) (Equation 4) in the Rstudio Forecast library to
find these orders while taking into account the smallest possible data differentiation.

AIC=-2log(L)y+2(p+q+P+Q+k) (4)

where: k=1 if ¢#0 and 0 otherwise, L is the maximized likelihood of the model fitted to
the differenced data; P and Q is the order for stationary processes (Aguado-Rodriguez
et al., 2016).

Sediment estimation with ARIMA
In this study, the daily sediment data obtained through modeling were used as a
basis and compared to the ARIMAS calculated through the Rstudio program with
the Forecast package (Hyndman et al., 2020). Three 30-day data series were analyzed
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for the year 1985 because this year has sufficient information for analysis and years
after 1997 have a data deficit. The three series correspond to the beginning (June)
and the end of the rainy season (September), and a cold dry season (November), The
appropriate ARIMA function was calculated and plotted for each month. Once the
ARIMA model was obtained, the estimation was performed for 10 days and the results
were compared to the modeling data. Similar to the validation of the SWAT model,
statistical criteria were used as proposed by Hyndman and Koehler (2006), and the
RMSE and the mean absolute percentage error (MAPE) were calculated (Equation 5),
since they are the most commonly used in time series.

(Si- 0))

X
0; 100

MAPE=L 3T

1

RESULTS AND DISCUSSION

Calibration and validation of the SWAT model

Hydrological runoff models have different physical conditions depending on the
region analyzed and the amount of data (for the validation and calibration processes),
all of which generates uncertainty in basins that are not gauged or have a deficit of
information. In this part of the work, the model calibration was performed for the
period from March to May 1985 (Figure 2A) using modifications in the Curve Number
(NC). These modifications were applied in a range of 7 % with a minimum value
of -6.8 % for the shrubby secondary vegetation of medium sub evergreen forest.
The results obtained for calibration showed that the model is considered very good,
since the NSE is 0.77, the PBIAS is 0.14, and the RMSE is less than half the standard
deviation of 0.39. As for the validation, the analysis period from June to December
1985 (Figure 2B) showed that the model is also considered very good, with NSE values
of 0.77, PBIAS of -2.85, and RMSE of 0.45. The very good values in the calibration and
validation processes agree with SWAT runoff models in Mexico elaborated by authors
such as Sanchez-Galindo et al. (2017) and Nevarez-Favela ef al. (2021).

Sediments
As mentioned above, the lack of daily sediment data at the hydrometric station is a
limitation since recording is made on a monthly and annual basis. This agrees with
what was reported by Cruz-Arévalo et al. (2021), where the calibration of the SWAT
model could not be performed due to the lack of sediment data in the Chapingo
River basin, and concluded that this condition can generate unsatisfactory results
that influence its reliability. In this model, the total annual sediment recording was
used, since the monthly record for January and February showed sediment loads of 0
Mg, which implies that precipitation in these months was not intense or long-lasting
enough to show considerable or measurable erosion in the sub-basin. Therefore, the
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Figure 2. Comparison between observed and simulated runoff with the SWAT model in the
Santa Cruz de Aquismon subwatershed, San Luis Potosi, Mexico. A: Calibration period (March-
May). B: Validation period (June-December).

annual erosion observed, according to the BANDAS database, was 20 200 m® which
when affected by the relative density of the sediment, namely 1.1 Mg m™ corresponding
to clay soils (DOF, 2002), resulted in a measured sediment production of 22 220 Mg
and that obtained with the model was 16 774. 94 Mg; that is, the model underestimates
erosion by 5 445.06 Mg, which corresponds to 25.50 % of that observed.

Sediment estimation (ARIMA)
ARIMAS, in the field of hydrology and meteorology, has been applied in drought
prediction, runoff coefficient determination, river flow harnessing (Thi-Thu-Hong
and Nguyen, 2020), sediment concentration assessment (Rajaee and Jafari, 2020), and
prediction of meteorological variables (Aguado-Rodriguez et al., 2016), among others.
This work focused on exploring the use of ARIMAS for sediment transport series in a
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short period of time, a month, and opening up the possibility of completing historical
time series or field measurements of a point of interest such as the same hydrometric
station.

The first data estimation corresponding to the month of June was obtained from an
ARIMA (5,1,0) with five autoregressives, one difference, and zero moving averages.
An RMSE of 109.26 was obtained, which is greater than half the standard deviation,
a PBIAS of -15.46, and a MAPE of 0.571, which indicated that the estimate is between
good and unsatisfactory (Table 1, Figure 3A). This is due to the variability of the SWAT
data, especially the last values, where there is an increase with respect to the first
values, resulting in estimates with magnitudes different from those expected. This is
consistent with Mora and Reyes (2013), who mention that the trend of the data defines
the behavior of the ARIMA and the most intense fluctuations must be eliminated to
regulate the results.

For the second series, the ARIMA (2,2,1) with two autoregressives, two differences,
and a moving average corresponding to the month of September, RMSE values of
7.95 were obtained, which is greater than half the standard deviation, PBIAS of 16.02,
and MAPE of 0.168, which indicated a better fit of the data, but still not a satisfactory

Table 1. SWAT, ARIMA values and 95 % confidence intervals (IC) in Mg ha-1 for the months of June
(Jun), September (Sep), and November (Nov).

DAY 1 2 3 4 5 6 7 8 9 10
;’uwn‘.“ 7768 7185 6343 7540 6441 6050 39520 27690 18110 128.00
ﬁiI.MA 8370 12075 15260 13403 10516 9135 11160 13640 130.88 112.27
O 683 8848 8373 11747 1547 2067 2234 2229 243 2731
oo TUBN 370 32056 38902 38553 36509 38941 44657 49573 50602 4976
g‘e’;’f“T 4401 4461 4288 4108 4861 4291 4133 3848 3777 3588
seI;I.MA 4491 4233 4023 3834 3599 3403 3188 2974 27.68 2553
O o 2809 1868 751 439 1707 3072 4499 6002 7572
TN 81 s657 6179 6907 7637 8513 9447 10448 11538 12678
AT 995 964 932 898 882 857 848 825 813 788
ORMAT 958 959 93 910 898 889 876 863 849 836
oo O 081 581 1854 2138 2438 2796 3100 3390 3676 3959
ICHigh 2905 3498 3719 3050 4264 4574 4839 5116 5374 5631

95
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Figure 3. Comparison of SWAT values vs ARIMA forecast and 95 % confidence intervals (IC). A:
ARIMA (5,1,0) of the first 10 days of June; B: ARIMA (2,2,1) of the first 10 days of September; C:
ARIMA (2,2,3) of the first 10 days of November.
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estimate for the RMSE. In this series, the estimates do not exceed the maximum and
remain in a range with the SWAT values (Table 1, Figure 3B), which allows modeling
possible maximum and minimum events, as suggested by Amaris et al. (2017), which
allowed the calculation of annual runoff volumes.
Finally, the ARIMA (2,2,3) with two autoregressives, two differences, and three moving
averages for the month of November, presented the best fit of the three months, with
RMSE values of 0.293 which is less than half the standard deviation, PBIAS of -1.93,
and MAPE of 0.029, and was satisfactory for each of the statistics. In this third series,
the estimates result in values with a close approximation to those obtained with SWAT
(Table 1, Figure 3C). As mentioned by Amaris ef al. (2017), an adequate fit among the
results is of utmost importance, since the estimates can be used to identify or forecast
the variation of water resources and their behavior over short time periods.
The results show that the variability of the time series is the main limitation of the
estimation; months with higher variability, such as June, are complicated to analyze.
However, in seasons with lower variability and a clear trend, either positive or
negative, the estimates can present minimal errors, as was the case in November. This
agrees with the findings by Montari ef al. (2000), who mentioned that in short periods
of one month, the predicted data are satisfactorily approximate, but this was only
tested with runoff.

CONCLUSIONS
The use of ARIMAS in the sediment domain is a fast and efficient way to make
estimates to complete databases. However, the results depend on the time series that
is analyzed to produce ARIMAS, which can underestimate and overestimate sediment
for different periods of the estimate or can be very accurately adjusted.
In this study, the simulated sediment transport is close to the observed one, but
the lack of databases, availability of information, daily data, and uncertainty in the
correct records were an important limitation for the model, since the corresponding
calibration for this parameter was not performed.
Finally, if there is a deficit in the available databases or if additional information
is required in the short term, it is possible to make sediment forecasts with SWAT
information using ARIMAS, but with time series of little variability and a trend;
therefore, it is recommended for short time series and where a large amount of
information is not needed, such as completing missing data series or short-term
estimates.
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