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ABSTRACT
Early identification of diseases in crops improves agronomic decision-making and has a positive
impact on agricultural production. In this study, we evaluated three machine learning classifiers
to identify three diseases in a tomato crop (Solanum lycopersicum) using chromatic characteristics
of digital images of leaves, and a computational tool was developed for its practical use. The
classifiers were support vector machine (SVM), multilayer perceptron (MLP), and histogram
gradient boosting (HGB). The target classes were tomato yellow leaf curl virus (V), the fungus
Septoria lycopersici (H), the acarid Tetranychus urticae (A), and healthy leaves (S). The images
were preprocessed to eliminate anomalies and the selection algorithm by region was used to
obtain pixels of representative color for each target class. The pixels were then transformed
from RGB to the HSV color model to create the training database, which consisted of three-
color characteristics (H, S and V) and the associated target class. The three classifiers achieved
similar prediction performance. According to the Kruskal Wallis test, there were no significant
differences (p-value =0.5117). SVM obtained an overall accuracy (Acc) of 93.3 %, MLP obtained a
value of 93.2 %, and HGB of 93.1 %. Moreover, in performance at the class level (diseases), SVM
obtained a higher F1 = 96 % in identification of symptoms caused by Septoria lycopersici and a
lower F1=90 % in identification of symptoms caused by Tetranychus urticae. The computational
tool developed, IDENTO v1.0, facilitated identification of the three leaf diseases in tomato based
on optimized classifiers and constitutes an option for promoting the use of artificial intelligence

in agriculture.

Keywords: Artificial intelligence, multi-class classification, support vector machine, decision

trees, neural networks, optimization.

INTRODUCTION
The growing world population demands more efficient agricultural production to
guarantee food security. Tomato (Solanum lycopersicum) is one of the most cultivated
plants in the world due to its consumption and economic importance. The increase in
its demand has promoted an increase in production and cultivated area. In 2019 the
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FAO (2021) reported a world production of 180 766 329 Mg on 5 030 545 ha. Mexico, at
the close of the 2020 growing cycle reported a production of 3 249 186 Mg of tomatoes
on an area of 44 814 ha (SIAP, 2021).

Tomato yield is affected by pests and diseases, and timely detection is important for
taking preventative and corrective actions (Seminis, 2017). Padol and Yadav (2016)
developed a disease classification system for grape leaves in which they applied
the nearest neighbors algorithm to segment diseased regions in images, extract
characteristics of color and texture, and implement a support vector machine with an
overall accuracy of 88.9 %. Abdullah ef al. (2007) applied a multilayer neural network
to classify diseases in rubber tree leaves with two approaches: RGB dominant pixels
(mean) and normalized data. These authors reported precision of 70 % and sensitivity
of more than 80 %.

Saleem et al. (2019) presented a review of deep learning models to classify diseases in
crops. Particularly, they reported that the models of convolutional neural networks
have been applied in disease detection with overall accuracy of more than 95 %.
Fuentes et al. (2017) proposed a detector of tomato leaf diseases in real time based on
deep-learning meta-architectures. These authors were able to successfully recognize
nine different categories of diseases and pests with an overall accuracy between 80
and 85 %.

The objective of this study was to evaluate the performance of three machine learning
models (support vector machine, multilayer perceptron, and histogram gradient
boosting) and develop a computational tool to facilitate identification of tomato leaf
diseases, such as tomato yellow leaf curl virus (TYLCV), leaf spot Septoria lycopersici,
and damage by the acarid Tefranychus urticae, and differentiate them from healthy
leaves, using digital images. We assume that the paradigms of machine learning
represent a viable, low-cost alternative for identification of plant diseases based on
color.

MATERIALS AND METHODS

Data set

The database of images used in this study consisted of a sub-set of 80 digital images
(20 per target class) reported by Hughes and Salathé (2015). These images of healthy
and diseased leaves were captured in the laboratory under different conditions of
illumination (https://www.kaggle.com/datasets/emmarex/plantdisease). Each image
was saved in jpg graphic format with a size of 256 x 256 pixels and a resolution of 96
pixels per inch. Each pixel of the image was transformed to the RGB standard color
model with three color channels: red (R), green (G) and blue (B), associated with one
of the four target classes: V, H, A and S.

The V class represents leaves infected by TYLCV, whose symptomology is manifested
by small, wrinkled leaves that are yellow between veins and have curled edges (Prasad
et al., 2020). Class H represents leaves affected by Septoria lycopersici, a fungus that
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causes small, dark, aqueous lesions that grow and become circular lesions with black
or brown edges (Seminis, 2017). Class A represents leaves affected by Tetranychus
urticae, an acarid that causes white dots, chlorosis and, in severe cases, necrosis and
defoliation (Pérez-Hedo et al., 2018). Class S is that of healthy leaves (Figure 1).

Figure 1. Images of tomato leaves with symptoms of disease. A: tomato yellow leaf curl virus;
B. Septoria lycopersici; C: Tetranychus urticae; D: healthy leaf.

Computational tools

Images were processed and analyzed with the tools Opencv 4.5.1.48 and Scikit image
0.15.0. The machine learning algorithms were implemented in Python 3.7 language
with the Scikit learn 0.21.3 library (Pedregosa et al., 2011) in the Spyder 3.6 development
platform. For the vector and matrix operations, we used the tools provided by Pandas
0.25.1 and Numpy 1.16.5. with visualization of the outputs with Matplotlib 3.1.1. The
Graphic interface was developed with Pyqt 5.9.2.

Images, data, and training of the learning models were processed with a computer
system under Windows 10 environment of 64 bits, Intel Core i5 7th processor Gen
@2.50 GHz, 500 SSD, 16 GB installed RAM memory.

Image processing
RGB images of the leaves were segmented by transformation to the HSV (Hue,
Saturation, Value) color model to increase the visual difference between the leaf and
the background. In HSV, H is the tone, which varies from 0 to 360 °, where each degree
represents a color; S refers to colorimetric purity and varies from 0 to 100 % (maximum
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color saturation); and V is the value or brightness and takes values from 0 % (black) to
100 % (white) (Camastra and Vinciarelli, 2015). The H, S, and V channels of each pixel
of the image were then weighted with the following expression (Cuevas et al., 2010):

1,=0.2989 * H+0.5870 * S+ 0.1140 * V
where [,is the weighted value of each pixel of the image.

With the set of I, weighted values, the optimum threshold was determined with the
OTSU algorithm to segment the leaf from the background of the image in binary form
(1: leaf; 0: background) (Dey, 2020). A Gaussian filter with a 5 x 5 kernel and mean =0
was applied to the segmented image of the leaf to homogenize it. Then, in images with
damage on the edges, a morphological closure operation was applied to replace the 0
value pixels that formed part of the leaf with 1 value pixels. To eliminate noise in the
image, the erosion operation was applied to 1 value replace pixels that did not form
part of the leaf with value = 0. With the resulting binary image, the outer edge of the
leaf was detected. With the image of the leaf profile, a mask with the values of white
(255, 255, 255) was created to extract the pixels that form part of the original image in
RGB format, and with the values of black (0, 0, 0) the leaf background (Cuevas et al.,
2010). The images with problems of illumination and/or focus (salt and pepper noise),
were smoothed with low pass filters such as the Gaussian, mean or medjian filters.

Extraction of characteristics

Color characteristics (obtaining samples of representative pixels of each target class)
were extracted using the region growing algorithm (RG). This algorithm consists of
selecting a seed pixel that represents the target class and determining by similarity
the pixels that belong to a region defined by the seed pixel. RG compares each of the
neighboring pixels (vicinity of four or eight pixels) with the seed pixel. If it complies to
the similarity criterion, it is annexed to the region. To explore a new region of interest,
another seed pixel is selected in the image and the search restarts. The algorithm
terminates when adjacent pixels similar to the seed are not found, or when the entire
image has been covered.

The binary image is used as a mask to recover the values of the three RGB channels
of the original image. Dissimilarity (d) determines how different the pixels should be
to exclude them from the selection. We used 30 images of leaves for each target class
(V, H, A and S) with different seeds and values of d in the interval [0.03, 0.08] (Li et al.,
2015). The set of RGB color pixels was cleansed of pixels that were duplicated within
and between target classes to create a set of unique R, G, and B input pixels.

Samples of selected images
The tomato leaves were segmented from the image background (Figures 2A and 2B)
using the HSV color model and an elliptical kernel to smooth the outline of the leaf. In
the closure operation, a 5 x 5 kernel was applied with six successive repetitions, and
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Figure 2. A: original tomato leaf; B: extraction of the object of interest, leaf infected by the tomato
yellow leaf curl virus; C: leaf infected by Septoria Iycopersici; D: Selection of samples, region
growing algorithm with two seed pixels.

in the erosion operation, a 3 x 3 kernel was used with three successive repetitions. The
images of the leaves with defined homogeneous edges were segmented automatically.
However, the wrinkled leaves with shadows and noise were segmented manually to
add and/or subtract small regions.

The selection of sample color pixels (R, G, B triplets) was obtained with the region
growing algorithm and dissimilarity of 0.05 (Figure 2C) with two seed pixels (Figure
2D). In the input dataset, the value triplets (R, G, B) consisted of 40 000 samples (10 000
per target class), where each sample was associated with its target class (V, H, A, or S).

Machine learning models

Support vector machine

The support vector machine model (SVM) is a machine learning algorithm that is used
to solve problems of classification or regression (Raschka and Mirjalili, 2017). SVM
training consists of finding a hyperplane that separates the target classes in such a way
that the margin between the support vectors is maximum. Smola and Schélkopf (2004)
point out that, for the case of a bidimensional problem, the separation hyperplane is
a line defined by:
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fxX)=wx+b

where w is the vector of weights; x is the vector of input characteristics; and b is the
bias. To find the maximum margin, one alternative is minimizing the norm of w,
that is, lwl?=w™w, and solving a problem of convex optimization. Slack variables C
are introduced to smooth the linear restrictions and achieve convergence in linearly
optimizing inseparable problems (Vapnik, 1995). With this approach, the loss function
is expressed as (Géron, 2019):

n
L= minw,b,clj |ew]?*+¢ ZCU)
i=1

P (w'x"+b) >1-¢

Subject toy .
HIER 0020 fori=1,2,.00m

where y© is the i*" predicted response; xis a characteristic input vector; w is a vector of
weights or parameters; b is the bias; (?is a slack variable;  is the number of samples;
t9is equal to -1 for negative samples (if y© = 0) and 1 for positive samples (if y=1)
and C is the hyperparameter of balance between reducing the slack variables and
maximizing the margin with a minimum w norm (Deisenroth et al., 2020).

Multilayer perceptron

The multilayer perceptron (MLP), or feed forward artificial neural network, is
a generalization of the perceptron model proposed by Rosenblatt (1958). MLP
architecture comprises three types of layers: the input layer (C), the hidden layer (C ),
and the output layer (C). The number of neurons in C, is equal to the number of
characteristics or input variables; the number of neurons in C is d (hyperparameter),
and in C_ it is equal to the number of target classes (K). The neurons in each layer feed
forward and are represented by a matrix of weights (W), with no connection between
neurons of the same layer (Ramchoun et al., 2016).

The MLP classifier is trained iteratively for each sample of the subset of A training
data. The matrix of weights W of MLP is initialized with random values between 0 and
1. The subset A passes through C, the output of the activation function enters at C,
then the output enters at C . This process in matrix form is expressed by:

A9 = @((A© W) WO)

where A® is a matrix of input samples (1 x m) where 1 is the number of samples, and
m is the number of characteristics or input variables; W is a matrix of weights (m x
d), where d is the number of neurons of the intermediate layer; ¢(-) is an activation
function, such as relu, sigmoide, softplus, tanh or softmax (Atienza, 2020); W® is a matrix
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of output weights (d x K) where K is the number of target classes of network outputs;
and A® is a matrix of probabilities (1 x K) that represents the outputs of the MLP
network (Raschka and Mirjalili, 2017).

The error was measured using a loss function (L) that compares the desired and
predicted responses (Atienza, 2020). The process of back propagation of the error
begins with the calculation of partial derivates using the chain rule, the contribution
to the error is calculated for each connection, and the values are updated with the
descending gradient algorithm. This optimizer minimizes the logistic loss function, or
crossed entropy, L, which is expressed by:

L=-2 Tilog(y) (1)

where K is the total number of target classes; T, is the observed target class; and y, is
the predicted target class (probability of membership).

Histogram gradient boosting

The histogram gradient boosting classifier (HGB) is an ensemble method that uses
multiple machine learning models. The HGB architecture uses decision trees as the
nucleus and integrates a sequential additive model in which a decision tree is trained
with the residual errors of its antecessor. In the end, a more robust and powerful HGB
model is obtained (Géron, 2019).

The sequential approach makes model training slower when the dataset is large (tens
of thousands of samples). Unlike the random forest model that uses independent
decision trees, HGB uses groups of input characteristics by means of classes that
represent intervals of whole numbers. Moreover, it uses histograms to divide the
samples and decrease training time. The size of the decision trees can be controlled
using hyperparameters: maximum number of leaves per node (mln), maximum depth
(md), and minimum samples per leaf (msl); the loss function to be minimized is the
logistic function (Equation 1) (Pedregosa et al., 2011). Friedman (2001) presented a
detailed mathematical description of the histogram gradient boosting model and
different alternatives of loss functions.

Classifier performance metrics

The metrics used to evaluate the performance of a classifier are deduced from a
confusion matrix (CM) in which the rows represent the observed classes, and the
columns represent the classes predicted by the classifier. A sample that is classified
correctly as class 1 is denominated true positive (TP) a sample that is classified
correctly as class 0 is denominated true negative (TN). A false negative (FN) occurs
when a sample of class 1 is classified as class 0. A false positive (FP) occurs when a
sample of class 0 is classified as class 1 (Raschka and Mirjalili, 2017). The performance
metrics of the classifiers used in this study were the following (Powers, 2011):
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The overall accuracy (Acc) is the proportion of correct classifications relative to the
total number of samples and is calculated by:

TN + TP
TN + TP + FN +FP

Acc=

Precision (P) evaluates the proportion of positive predictions, and measures the
reliability of the prediction to classify the target class and is defined as:

TP

P=Tp+p

Sensitivity (S) measures the capacity of the classifier to detect positive samples
correctly and is calculated by:

TP

5= TP+EN

The metric F1 score is the harmonic mean of P and S, and is calculated by:

2*P*S

Fl1=
P+S

Given that P and S vary inversely, the trade-off between the two metrics depends on the
objective of classification. The precision-sensitivity curve (P-S) enables identification
of an optimum point to balance the two metrics; the area under the P-S curve (AUC_ )
is a metric that considers the imbalance between classes.

The ROC (receiver operating characteristic) curve is a graph of S versus TFP, where TFP is
the rate of false positives, the proportion of negatives classified as positive, TFP = 1-E,
where E is the specificity, the proportion of negative samples classified as negative. The
ROC curve is graphed with values of S versus 1-E for different thresholds of probability

of membership to each target class. The area under the ROC curve (AUC, ) measures

ROC
the performance of a classifier, a value near 1 is considered optimal (Hand and Till,

2001).

Classifier training and prediction performance
The training of classifiers SVM, MLP and HGB was carried out in two stages. The
first consisted of selecting the optimal hyperparameters of each classifier. The
second was evaluating the predictive capacity of the classifiers based on the optimal
hyperparameters.
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Grid search and selection of hyperparameters

Selection of optimum hyperparameters of the classifiers was based on a grid search
and a cross-validation procedure (VC). The grid search consists of defining ranges
of values for each hyperparameter of interest. For each combination of values, the
classifier trains using VC with p random partitions. VC uses a random partition of the
original dataset as a training set for which p random disjointed partitions stratified per
target class are generated. For each combination of hyperparameters, the model trains
p times using a partition for the test and the rest for training. After p iterations, the
average Acc is obtained. At the end of the search, the combination of hyperparameters
that maximizes the average Acc is selected. In this study, 80 % of the data were used
for training, 20 % for testing, and VC with p = 5. The range of values of the grid search
for each hyperparameter was defined experimentally by trial and error (Table 1)
(Raschka, 2018).

Table 1. Value ranges of hyperparameter defined in the grid search for
the classifiers support vector machine (SVM), multilayer perceptron
(MLP) and histogram gradient boosting (HGB).

Classifier =~ Hyperparameter Values

C 0.5, 1, 10, 25, 50

SVM kernel linear, polynomial, rbff, sigmoid
Gamma 0.1,0.3,0.5,0.7, 0.9
fdl ovo$, ovrP?
Hidden layer 100, 120, 150
far relu, logistic

MLP optimizer adam, "sgd
tall constant, adaptative
alfa 0.0001, 0.001, 0.01
tall 0.05,0.1,0.2
mhnss 25,31, 50

HGB mp** 9,10, 11
mmh™ 15, 20, 25

rbf: kernel Gaussian; 1fd: decision function; Sovo: one against one; Povr:
one against the rest; *fa: activation function; "sgd: stochastic gradient
descent; 1ta: learning rate; $Smhn: maximum number of leaves per
node; "Pmp: maximum depth; =mmh: maximum number of samples
per leaf.

Classifier prediction performance
The performance of each classifier was evaluated based on the entire dataset and the
optimal hyperparameters. Training and test of each classifier were carried out with
VC (p =5) and the Acc metric. In each iteration, the performance metrics are obtained
based on the test partitions. At the end of VC, the Acc, F1 macro averages and standard
deviations were obtained. The three classifiers with optimal values of Acc were then
used to obtain the metrics P, S and F1 for each target class.
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Prediction and identification with new images
In this study, the computational tool denominated IDENTO was developed to identify
diseases on tomato leaves in unseen images (not used in the training step) based on
optimal learning classifiers. Moreover, IDENTO allows image processing to create
new datasets for training and test. The tool is intended to facilitate the use of machine
learning models and their practical application in recognizing the analyzed diseases
(Ambrosio-Ambrosio and Gonzalez-Camacho, 2022).

RESULTS AND DISCUSSION

Optimal hyperparameters
To select optimal hyperparameters, a training dataset with 128 000 samples (32 000 per
target class) selected by a random sampling of the full dataset was used and stratified
for each target class (Table 2).

Table 2. Optimal hyperparameters obtained by means
of a grid search and cross-validation of the classifiers
support vector machine (SVM), multilayer perceptron
(MLP), and histogram gradient boosting (HGB).

Classifier Hyperparameter Optimum
C 50
kernel rbft

SVM Gamma 10
fdi ovr®
Co 150
fa® Relu

MLP optimizer Adam
ta* 0.001
alfa 0.0001
ta* 0.1
mhn't 31

HGB - 1
mmhSs 15

'rbf: Gaussian kernel; fd: decision function; Sovr: one
versus the rest; "fa: activation function; *ta: learning
rate; mhn: maximum number of leaves per node; Mmp:
maximum depth; $mmh: maximum number of samples
per leaf.

Evaluation of classifier performance
The three classifiers achieved good performance F1 > 0.95 for classifying class H, the
fungus Septoria lycopersici that causes brown spots with highly distinctive yellow
outline. For class A, the acarid Tetranychus urticae, a value of F1 > 0.89 was obtained
since it was not notably different from class S (Table 3)
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Table 3. Performance of the classifiers support vector
machine (SVM), multilayer perceptron (MLP) and
histogram gradient boosting (HGB); metrics precision
(P), sensitivity (S), score (F1) for each target class.

Model Class P S F1 AUC,,. AUC

P-s

Vvt 095 092 093 0.98 0.95

HT 095 096 0.96 0.99 0.97

SVM As  0.89 0.90 0.90 0.97 091
S* 094 095 094 0.99 0.96

V. 09 091 093 0.99 0.98

H 095 096 0.95 1.00 0.99

MLP A 089 090 0.90 0.98 0.95
S 094 096 0.95 0.99 0.98

V. 09 091 093 0.99 0.98

HGB H 095 096 0.95 1.00 0.99
A 088 090 0.89 0.98 0.94

S 094 095 094 0.99 0.98

*V: tomato yellow leaf curl virus; TH: fungus Septoria
lycopersici; SA: acarid Tetranychus urticae; *S: healthy leaf.

The three models had similar performance (Table 3), the class H, fungus Septoria
lycopersici, was identified more efficiently and class A, acarid Tetranychus urticae, less
efficiently. SVM obtained the highest F1 score, 96 %, and HGB had the lowest score, F1
=89 %. At the class level, the performance metrics were very similar.

The SVM confusion matrix for a test set of 8000 random samples describes a total
of 7459 pixels classified correctly with Acc = 93.2 % (Figure 3A). The ROC and P-S
curves confirm that SVM had better performance in classifying class H than for class
A (Figure 3B and 3C). The RF and HGB classifier confusion matrixes were very similar
to SVM.

The final evaluation of performance of the classifiers SVM, MLP and HGB was carried
out with a VC, p = 5 random partitions of 32 000 samples for training and 8000 for test
prediction based on the metric Acc. Comparison of the three classifiers shows that, in
terms of the median and the mean, Acc was more than 93 % (Figure 4A).

The classifiers SVM, MLP, and HGB had no problems of data overfitting. This occurs
when the classifier achieves very high performance with the training set and low
performance with the test, or prediction, set. The HGB classifier obtained very large
differences in Acc between training and testing in the five random partitions of VC.
However, these differences did not reflect an overfitting problem (Figure 4B).

SVM obtained Acc = 0.947 (£0.001) in training and in testing 0.934 (x0.004). MLP
achieved Acc = 0.932 (+0.001) in training and 0.931 (+0.005) in testing; HGB reached a
training Acc=0.959 (+0.001) and a test Acc of 0.931 (+0.003). Based on overall precision,
average Acc, the three classifiers obtained very similar prediction performance, i.c.,
SVM (93.4 %), MLP (93.2 %) and HGB (93.1 %). The non-parametric Kruskal Wallis
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Figure 3. Support vector machine (SVM) performance. A: confusion matrix; B: ROC curves; C:
P-S curves, precision versus sensitivity. Target classes: tomato yellow leaf curl virus (V), fungus
Septoria lycopersici (H), acarid Tetranychus urticae (A), and healthy leaf (S).
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Figure 4. Comparison of overall accuracy (Acc) of the classifiers support vector machine (SVM),
multilayer perceptron (MLP), and histogram gradient boosting (HGB). A. box plot of Acc; B.
Graph of Acc in training and test for each partition k obtained by cross-validation.

test was applied to compare the response in terms of Acc performance of the three
classifiers with five replications, and x*>=1.34, df =2, p-value = 0.5117 was obtained and
thus confirms that there were no significant differences in performance.

Regarding the performance achieved by the three classifiers, Acc was more than 93 %
and was acceptable for identifying the diseases described and under the conditions of
acquisition of the leaf images. In terms of computation time, the algorithms SVM and
HGB are faster than MLP, and SVM was more stable in training and in testing (Figure
4B). SVM, MLP and HGB represent three different supervised machine learning
paradigms. SVM is grounded in a process of quadratic optimization (Smola and
Scholkop, 2004; Vapnik, 1995), MLP is a non-linear approximation model (Ramchoun
et al., 2016), and HGB is based on a geometric approach of decision tree assembly
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(Friedman, 2001). The relationship precision versus computation time of a machine
learning algorithm, relative to deep learning paradigms is highly superior. However,
to increase the predictive capacity of the learning algorithms even more, the use of
deep learning is a viable option with a higher computational cost (Saleem et al., 2019;
Padol and Yadav, 2016).

Disease prediction in new leaf images

The computational tool IDENTO v1.0 allows identification of diseases based on the
optimal learning models used in this study. Identification comprises two stages. The
first processes an RGB image to segment the leaf from the background (homogeneous).
The second uses the segmented leaf to classify and identify the tomato disease. The
classifiers SVM, MLP and HGB are activated from the Python platform and predict
the disease.

The predictive capability of IDENTO v1.0 was demonstrated with an unseen tomato
leaf image, not used in the classifier training or test stages, from the database
consulted for this study. The image was 256 x 256 pixels with three color channels, R,
G, B (Figure 5A). The three classifiers coincided in indicating Septoria lycopersici as the

- v H Hl A s
Information
Num. Pivels 14047 px

441%  ESE%

Relative Rate

Decisi " &
T Lead diseased by Seploria L.

.Y 0 EEA WS g HOEE A S

Information Information

A\um. Pixels 14047 px \um. Pivels 14047 px

Ielative lale Relalive Rale 260% 659%
$730%  DHO%E S877%  BGA%

Decision | .4 diseased by Seplorial. Decision [*) oot diseased by Seploria L.

Figure 5. Identification of three diseases on tomato leaves, based on the classifiers support
vector machine (SVM), multilayer perceptron (MLP), and histogram gradient boosting (HGB).
A: preprocessed tomato leaf image; B: identification with SVM; C: identification with MLP; D:
identification with HGB.
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causal agent of the symptoms. The difference in Acc global precision of the models
causes a change in the distribution of the pixels by class. Class H with SVM obtained
the largest number of predicted pixels, 60.5 % (Figure 5B), and MLP had the lowest
number, 57.4 % (Figure 5C). Given that the difference in the proportions of pixels is
small, the visualized outputs are very similar.

The tool incorporates heuristic decision rules obtained by trial and error for
identification of the most relevant disease, based on the relative rate of pixels (TR),
that is, the proportion of pixels of a class of the total number of pixels of the leaf. If TR
is higher than 70 % for class S, the leaf is identified as healthy. If TR is higher than 35 %
for class V, it is identified as a leaf diseased by TYLCV, and if TR is more than 17 % for
class H, it is identified as a leaf diseased by Septoria lycopersici, while if TR is more than
20 % for A, the disease is identified as caused by Tetranychus urticae. The thresholds of
TR were defined in function of the analysis of multiple TR obtained when prediction
was executed on the set of test images; overall precision in classification was more
than 93 % (Kulkarni et al., 2021).

CONCLUSIONS

The three classifiers, support vector machine (SVM), multilayer perceptron (MLP),
and histogram gradient boosting (HGB) reached an overall accuracy (Acc) of more
than 93 % in predicting the target classes: tomato yellow leaf curl virus (V), the fungus
Septoria lycopersici (H), the acarid Tetranychus urticae (A), and healthy leaves (S). The
fungus Septoria lycopersici was classified with a value of F1 =96 %, healthy leaves with
F1 =95 %, tomato yellow leaf curl virus with F1 = 93 %, and the acarid Tetranychus
urticae with F1 =90 %.

The computational tool IDENTO v1.0 we developed enables practical application
of the machine learning classifiers evaluated for identification of the diseases in
tomato leaves based on the proposed heuristic rules. The user guide of the software
is available at https://github.com/JPAAPSEICOA/Manual-IA-IMAGE-PROV1.0. This
study shows the importance of applying machine learning paradigms using digital
images for disease identification.
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