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ABSTRACT
Early identification of diseases in crops improves agronomic decision-making and has a positive 
impact on agricultural production. In this study, we evaluated three machine learning classifiers 
to identify three diseases in a tomato crop (Solanum lycopersicum) using chromatic characteristics 
of digital images of leaves, and a computational tool was developed for its practical use. The 
classifiers were support vector machine (SVM), multilayer perceptron (MLP), and histogram 
gradient boosting (HGB). The target classes were tomato yellow leaf curl virus (V), the fungus 
Septoria lycopersici (H), the acarid Tetranychus urticae (A), and healthy leaves (S). The images 
were preprocessed to eliminate anomalies and the selection algorithm by region was used to 
obtain pixels of representative color for each target class. The pixels were then transformed 
from RGB to the HSV color model to create the training database, which consisted of three-
color characteristics (H, S and V) and the associated target class. The three classifiers achieved 
similar prediction performance. According to the Kruskal Wallis test, there were no significant 
differences (p-value = 0.5117). SVM obtained an overall accuracy (Acc) of 93.3 %, MLP obtained a 
value of 93.2 %, and HGB of 93.1 %. Moreover, in performance at the class level (diseases), SVM 
obtained a higher F1 = 96 % in identification of symptoms caused by Septoria lycopersici and a 
lower F1 = 90 % in identification of symptoms caused by Tetranychus urticae. The computational 
tool developed, IDENTO v1.0, facilitated identification of the three leaf diseases in tomato based 
on optimized classifiers and constitutes an option for promoting the use of artificial intelligence 
in agriculture.

Keywords: Artificial intelligence, multi-class classification, support vector machine, decision 
trees, neural networks, optimization.

INTRODUCTION
The growing world population demands more efficient agricultural production to 
guarantee food security. Tomato (Solanum lycopersicum) is one of the most cultivated 
plants in the world due to its consumption and economic importance. The increase in 
its demand has promoted an increase in production and cultivated area. In 2019 the 
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FAO (2021) reported a world production of 180 766 329 Mg on 5 030 545 ha. Mexico, at 
the close of the 2020 growing cycle reported a production of 3 249 186 Mg of tomatoes 
on an area of 44 814 ha (SIAP, 2021).
Tomato yield is affected by pests and diseases, and timely detection is important for 
taking preventative and corrective actions (Seminis, 2017). Padol and Yadav (2016) 
developed a disease classification system for grape leaves in which they applied 
the nearest neighbors algorithm to segment diseased regions in images, extract 
characteristics of color and texture, and implement a support vector machine with an 
overall accuracy of 88.9 %. Abdullah et al. (2007) applied a multilayer neural network 
to classify diseases in rubber tree leaves with two approaches: RGB dominant pixels 
(mean) and normalized data. These authors reported precision of 70 % and sensitivity 
of more than 80 %.
Saleem et al. (2019) presented a review of deep learning models to classify diseases in 
crops. Particularly, they reported that the models of convolutional neural networks 
have been applied in disease detection with overall accuracy of more than 95 %. 
Fuentes et al. (2017) proposed a detector of tomato leaf diseases in real time based on 
deep-learning meta-architectures. These authors were able to successfully recognize 
nine different categories of diseases and pests with an overall accuracy between 80 
and 85 %.
The objective of this study was to evaluate the performance of three machine learning 
models (support vector machine, multilayer perceptron, and histogram gradient 
boosting) and develop a computational tool to facilitate identification of tomato leaf 
diseases, such as tomato yellow leaf curl virus (TYLCV), leaf spot Septoria lycopersici, 
and damage by the acarid Tetranychus urticae, and differentiate them from healthy 
leaves, using digital images. We assume that the paradigms of machine learning 
represent a viable, low-cost alternative for identification of plant diseases based on 
color.

MATERIALS AND METHODS

Data set
The database of images used in this study consisted of a sub-set of 80 digital images 
(20 per target class) reported by Hughes and Salathé (2015). These images of healthy 
and diseased leaves were captured in the laboratory under different conditions of 
illumination (https://www.kaggle.com/datasets/emmarex/plantdisease). Each image 
was saved in jpg graphic format with a size of 256 x 256 pixels and a resolution of 96 
pixels per inch. Each pixel of the image was transformed to the RGB standard color 
model with three color channels: red (R), green (G) and blue (B), associated with one 
of the four target classes: V, H, A and S.
The V class represents leaves infected by TYLCV, whose symptomology is manifested 
by small, wrinkled leaves that are yellow between veins and have curled edges (Prasad 
et al., 2020). Class H represents leaves affected by Septoria lycopersici, a fungus that 
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causes small, dark, aqueous lesions that grow and become circular lesions with black 
or brown edges (Seminis, 2017). Class A represents leaves affected by Tetranychus 
urticae, an acarid that causes white dots, chlorosis and, in severe cases, necrosis and 
defoliation (Pérez-Hedo et al., 2018). Class S is that of healthy leaves (Figure 1).

Figure 1. Images of tomato leaves with symptoms of disease. A: tomato yellow leaf curl virus; 
B. Septoria lycopersici; C: Tetranychus urticae; D: healthy leaf. 

 

Computational tools
Images were processed and analyzed with the tools Opencv 4.5.1.48 and Scikit image 
0.15.0. The machine learning algorithms were implemented in Python 3.7 language 
with the Scikit learn 0.21.3 library (Pedregosa et al., 2011) in the Spyder 3.6 development 
platform. For the vector and matrix operations, we used the tools provided by Pandas 
0.25.1 and Numpy 1.16.5. with visualization of the outputs with Matplotlib 3.1.1. The 
Graphic interface was developed with Pyqt 5.9.2.
Images, data, and training of the learning models were processed with a computer 
system under Windows 10 environment of 64 bits, Intel Core i5 7th processor Gen 
@2.50 GHz, 500 SSD, 16 GB installed RAM memory.

Image processing
RGB images of the leaves were segmented by transformation to the HSV (Hue, 
Saturation, Value) color model to increase the visual difference between the leaf and 
the background. In HSV, H is the tone, which varies from 0 to 360 °, where each degree 
represents a color; S refers to colorimetric purity and varies from 0 to 100 % (maximum 
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color saturation); and V is the value or brightness and takes values from 0 % (black) to 
100 % (white) (Camastra and Vinciarelli, 2015). The H, S, and V channels of each pixel 
of the image were then weighted with the following expression (Cuevas et al., 2010):

It = 0.2989 * H + 0.5870 * S + 0.1140 * V

where It is the weighted value of each pixel of the image.

With the set of It weighted values, the optimum threshold was determined with the 
OTSU algorithm to segment the leaf from the background of the image in binary form 
(1: leaf; 0: background) (Dey, 2020). A Gaussian filter with a 5 x 5 kernel and mean = 0 
was applied to the segmented image of the leaf to homogenize it. Then, in images with 
damage on the edges, a morphological closure operation was applied to replace the 0 
value pixels that formed part of the leaf with 1 value pixels. To eliminate noise in the 
image, the erosion operation was applied to 1 value replace pixels that did not form 
part of the leaf with value = 0. With the resulting binary image, the outer edge of the 
leaf was detected. With the image of the leaf profile, a mask with the values of white 
(255, 255, 255) was created to extract the pixels that form part of the original image in 
RGB format, and with the values of black (0, 0, 0) the leaf background (Cuevas et al., 
2010). The images with problems of illumination and/or focus (salt and pepper noise), 
were smoothed with low pass filters such as the Gaussian, mean or median filters.

Extraction of characteristics
Color characteristics (obtaining samples of representative pixels of each target class) 
were extracted using the region growing algorithm (RG). This algorithm consists of 
selecting a seed pixel that represents the target class and determining by similarity 
the pixels that belong to a region defined by the seed pixel. RG compares each of the 
neighboring pixels (vicinity of four or eight pixels) with the seed pixel. If it complies to 
the similarity criterion, it is annexed to the region. To explore a new region of interest, 
another seed pixel is selected in the image and the search restarts. The algorithm 
terminates when adjacent pixels similar to the seed are not found, or when the entire 
image has been covered. 
The binary image is used as a mask to recover the values of the three RGB channels 
of the original image. Dissimilarity (d) determines how different the pixels should be 
to exclude them from the selection. We used 30 images of leaves for each target class 
(V, H, A and S) with different seeds and values of d in the interval [0.03, 0.08] (Li et al., 
2015). The set of RGB color pixels was cleansed of pixels that were duplicated within 
and between target classes to create a set of unique R, G, and B input pixels.

Samples of selected images
The tomato leaves were segmented from the image background (Figures 2A and 2B) 
using the HSV color model and an elliptical kernel to smooth the outline of the leaf. In 
the closure operation, a 5 x 5 kernel was applied with six successive repetitions, and 
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in the erosion operation, a 3 x 3 kernel was used with three successive repetitions. The 
images of the leaves with defined homogeneous edges were segmented automatically. 
However, the wrinkled leaves with shadows and noise were segmented manually to 
add and/or subtract small regions. 
The selection of sample color pixels (R, G, B triplets) was obtained with the region 
growing algorithm and dissimilarity of 0.05 (Figure 2C) with two seed pixels (Figure 
2D). In the input dataset, the value triplets (R, G, B) consisted of 40 000 samples (10 000 
per target class), where each sample was associated with its target class (V, H, A, or S).

Machine learning models 

Support vector machine
The support vector machine model (SVM) is a machine learning algorithm that is used 
to solve problems of classification or regression (Raschka and Mirjalili, 2017). SVM 
training consists of finding a hyperplane that separates the target classes in such a way 
that the margin between the support vectors is maximum. Smola and Schölkopf (2004) 
point out that, for the case of a bidimensional problem, the separation hyperplane is 
a line defined by: 

Figure 2. A: original tomato leaf; B: extraction of the object of interest, leaf infected by the tomato 
yellow leaf curl virus; C: leaf infected by Septoria lycopersici; D: Selection of samples, region 
growing algorithm with two seed pixels. 
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f(x) = wTx + b

where w is the vector of weights; x is the vector of input characteristics; and b is the 
bias. To find the maximum margin, one alternative is minimizing the norm of w, 
that is, ‖w‖2 = wTw, and solving a problem of convex optimization. Slack variables ζ 
are introduced to smooth the linear restrictions and achieve convergence in linearly 
optimizing inseparable problems (Vapnik, 1995). With this approach, the loss function 
is expressed as (Géron, 2019):

L = minw,b, 2
1 < w < 2 + c (i)

i = 1

n

/

Subject to t(i) wT x(i) + bQ V $ 1 - (i)

(i) $ 0 for i = 1, 2, ..., n
G

where y(i) is the ith predicted response; x(i) is a characteristic input vector; w is a vector of 
weights or parameters; b is the bias; ζ(i) is a slack variable; n is the number of samples; 
t(i) is equal to -1 for negative samples (if y(i) = 0) and 1 for positive samples (if y(i) = 1) 
and C is the hyperparameter of balance between reducing the slack variables and 
maximizing the margin with a minimum w norm (Deisenroth et al., 2020).

Multilayer perceptron 
The multilayer perceptron (MLP), or feed forward artificial neural network, is 
a generalization of the perceptron model proposed by Rosenblatt (1958). MLP 
architecture comprises three types of layers: the input layer (Ce), the hidden layer (Co), 
and the output layer (Cs). The number of neurons in Ce is equal to the number of 
characteristics or input variables; the number of neurons in Co is d (hyperparameter), 
and in Cs it is equal to the number of target classes (K). The neurons in each layer feed 
forward and are represented by a matrix of weights (W), with no connection between 
neurons of the same layer (Ramchoun et al., 2016).
The MLP classifier is trained iteratively for each sample of the subset of A training 
data. The matrix of weights W of MLP is initialized with random values between 0 and 
1. The subset A passes through Ce, the output of the activation function enters at Co, 
then the output enters at Cs. This process in matrix form is expressed by:

A(s) = φ(φ(A(e) W(0)) W(s))

where A(e) is a matrix of input samples (n x m) where n is the number of samples, and 
m is the number of characteristics or input variables; W(0) is a matrix of weights (m x 
d), where d is the number of neurons of the intermediate layer; φ(∙) is an activation 
function, such as relu, sigmoide, softplus, tanh or softmax (Atienza, 2020); W(s) is a matrix 
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of output weights (d x K) where K is the number of target classes of network outputs; 
and A(s) is a matrix of probabilities (n x K) that represents the outputs of the MLP 
network (Raschka and Mirjalili, 2017). 
The error was measured using a loss function (L) that compares the desired and 
predicted responses (Atienza, 2020). The process of back propagation of the error 
begins with the calculation of partial derivates using the chain rule, the contribution 
to the error is calculated for each connection, and the values are updated with the 
descending gradient algorithm. This optimizer minimizes the logistic loss function, or 
crossed entropy, L, which is expressed by:

L =- TK log ykR W
K = 1

K/
	 (1)

where K is the total number of target classes; Tk is the observed target class; and yk is 
the predicted target class (probability of membership).

Histogram gradient boosting
The histogram gradient boosting classifier (HGB) is an ensemble method that uses 
multiple machine learning models. The HGB architecture uses decision trees as the 
nucleus and integrates a sequential additive model in which a decision tree is trained 
with the residual errors of its antecessor. In the end, a more robust and powerful HGB 
model is obtained (Géron, 2019).
The sequential approach makes model training slower when the dataset is large (tens 
of thousands of samples). Unlike the random forest model that uses independent 
decision trees, HGB uses groups of input characteristics by means of classes that 
represent intervals of whole numbers. Moreover, it uses histograms to divide the 
samples and decrease training time. The size of the decision trees can be controlled 
using hyperparameters: maximum number of leaves per node (mln), maximum depth 
(md), and minimum samples per leaf (msl); the loss function to be minimized is the 
logistic function (Equation 1) (Pedregosa et al., 2011). Friedman (2001) presented a 
detailed mathematical description of the histogram gradient boosting model and 
different alternatives of loss functions. 

Classifier performance metrics
The metrics used to evaluate the performance of a classifier are deduced from a 
confusion matrix (CM) in which the rows represent the observed classes, and the 
columns represent the classes predicted by the classifier. A sample that is classified 
correctly as class 1 is denominated true positive (TP) a sample that is classified 
correctly as class 0 is denominated true negative (TN). A false negative (FN) occurs 
when a sample of class 1 is classified as class 0. A false positive (FP) occurs when a 
sample of class 0 is classified as class 1 (Raschka and Mirjalili, 2017). The performance 
metrics of the classifiers used in this study were the following (Powers, 2011):
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The overall accuracy (Acc) is the proportion of correct classifications relative to the 
total number of samples and is calculated by:

	 TN + TP
Acc = 
	 TN + TP + FN +FP

Precision (P) evaluates the proportion of positive predictions, and measures the 
reliability of the prediction to classify the target class and is defined as:

	 TP
P = 
	 TP + FP

Sensitivity (S) measures the capacity of the classifier to detect positive samples 
correctly and is calculated by:

	 TP
S = 
	 TP + FN

The metric F1 score is the harmonic mean of P and S, and is calculated by:

	 2 * P * S
F1 = 
	 P + S

Given that P and S vary inversely, the trade-off between the two metrics depends on the 
objective of classification. The precision-sensitivity curve (P-S) enables identification 
of an optimum point to balance the two metrics; the area under the P-S curve (AUCp-s) 
is a metric that considers the imbalance between classes. 
The ROC (receiver operating characteristic) curve is a graph of S versus TFP, where TFP  is 
the rate of false positives, the proportion of negatives classified as positive, TFP  = 1-E, 
where E is the specificity, the proportion of negative samples classified as negative. The 
ROC curve is graphed with values of S versus 1-E for different thresholds of probability 
of membership to each target class. The area under the ROC curve (AUCROC) measures 
the performance of a classifier, a value near 1 is considered optimal (Hand and Till, 
2001).

Classifier training and prediction performance
The training of classifiers SVM, MLP and HGB was carried out in two stages. The 
first consisted of selecting the optimal hyperparameters of each classifier. The 
second was evaluating the predictive capacity of the classifiers based on the optimal 
hyperparameters. 
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Grid search and selection of hyperparameters
Selection of optimum hyperparameters of the classifiers was based on a grid search 
and a cross-validation procedure (VC). The grid search consists of defining ranges 
of values for each hyperparameter of interest. For each combination of values, the 
classifier trains using VC with p random partitions. VC uses a random partition of the 
original dataset as a training set for which p random disjointed partitions stratified per 
target class are generated. For each combination of hyperparameters, the model trains 
p times using a partition for the test and the rest for training. After p iterations, the 
average Acc is obtained. At the end of the search, the combination of hyperparameters 
that maximizes the average Acc is selected. In this study, 80 % of the data were used 
for training, 20 % for testing, and VC with p = 5. The range of values of the grid search 
for each hyperparameter was defined experimentally by trial and error (Table 1) 
(Raschka, 2018).

Table 1. Value ranges of hyperparameter defined in the grid search for 
the classifiers support vector machine (SVM), multilayer perceptron 
(MLP) and histogram gradient boosting (HGB).

Classifier Hyperparameter Values

SVM

C 0.5, 1, 10, 25, 50
kernel linear, polynomial, rbf†, sigmoid
Gamma 0.1, 0.3, 0.5, 0.7, 0.9
fd¶ ovo§, ovrÞ

MLP

Hidden layer 100, 120, 150
fa¤ relu, logistic
optimizer adam, ††sgd
ta¶¶ constant, adaptative
alfa 0.0001, 0.001, 0.01

HGB

ta¶¶ 0.05, 0.1, 0.2
mhn§§ 25, 31, 50
mpÞÞ 9, 10, 11
mmh¤¤ 15, 20, 25

†rbf: kernel Gaussian; ¶fd: decision function; §ovo: one against one; Þovr: 
one against the rest; ¤fa: activation function; ††sgd: stochastic gradient 
descent; ¶¶ta: learning rate; §§mhn: maximum number of leaves per 
node; ÞÞmp: maximum depth; ¤¤mmh: maximum number of samples 
per leaf.

Classifier prediction performance 
The performance of each classifier was evaluated based on the entire dataset and the 
optimal hyperparameters. Training and test of each classifier were carried out with 
VC (p = 5) and the Acc metric. In each iteration, the performance metrics are obtained 
based on the test partitions. At the end of VC, the Acc, F1 macro averages and standard 
deviations were obtained. The three classifiers with optimal values of Acc were then 
used to obtain the metrics P, S and F1 for each target class.
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Prediction and identification with new images 
In this study, the computational tool denominated IDENTO was developed to identify 
diseases on tomato leaves in unseen images (not used in the training step) based on 
optimal learning classifiers. Moreover, IDENTO allows image processing to create 
new datasets for training and test. The tool is intended to facilitate the use of machine 
learning models and their practical application in recognizing the analyzed diseases 
(Ambrosio-Ambrosio and González-Camacho, 2022).

RESULTS AND DISCUSSION

Optimal hyperparameters
To select optimal hyperparameters, a training dataset with 128 000 samples (32 000 per 
target class) selected by a random sampling of the full dataset was used and stratified 
for each target class (Table 2).

Table 2. Optimal hyperparameters obtained by means 
of a grid search and cross-validation of the classifiers 
support vector machine (SVM), multilayer perceptron 
(MLP), and histogram gradient boosting (HGB).

Classifier Hyperparameter Optimum

SVM

C 50
kernel rbf†

Gamma 10
fd¶ ovr§

MLP

Co 150
faÞ Relu
optimizer Adam
ta¤ 0.001
alfa 0.0001

HGB

ta¤ 0.1
mhn†† 31
mp¶¶ 11
mmh§§ 15

†rbf: Gaussian kernel; ¶fd: decision function; §ovr: one 
versus the rest; Þfa: activation function; ¤ta: learning 
rate; ††mhn: maximum number of leaves per node; ¶¶mp: 
maximum depth; §§mmh: maximum number of samples 
per leaf.

Evaluation of classifier performance 
The three classifiers achieved good performance F1 > 0.95 for classifying class H, the 
fungus Septoria lycopersici that causes brown spots with highly distinctive yellow 
outline. For class A, the acarid Tetranychus urticae, a value of F1 > 0.89 was obtained 
since it was not notably different from class S (Table 3)
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The three models had similar performance (Table 3), the class H, fungus Septoria 
lycopersici, was identified more efficiently and class A, acarid Tetranychus urticae, less 
efficiently. SVM obtained the highest F1 score, 96 %, and HGB had the lowest score, F1 
= 89 %. At the class level, the performance metrics were very similar. 
The SVM confusion matrix for a test set of 8000 random samples describes a total 
of 7459 pixels classified correctly with Acc = 93.2 % (Figure 3A). The ROC and P-S 
curves confirm that SVM had better performance in classifying class H than for class 
A (Figure 3B and 3C). The RF and HGB classifier confusion matrixes were very similar 
to SVM.
The final evaluation of performance of the classifiers SVM, MLP and HGB was carried 
out with a VC, p = 5 random partitions of 32 000 samples for training and 8000 for test 
prediction based on the metric Acc. Comparison of the three classifiers shows that, in 
terms of the median and the mean, Acc was more than 93 % (Figure 4A).
The classifiers SVM, MLP, and HGB had no problems of data overfitting. This occurs 
when the classifier achieves very high performance with the training set and low 
performance with the test, or prediction, set. The HGB classifier obtained very large 
differences in Acc between training and testing in the five random partitions of VC. 
However, these differences did not reflect an overfitting problem (Figure 4B). 
SVM obtained Acc = 0.947 (±0.001) in training and in testing 0.934 (±0.004). MLP 
achieved Acc = 0.932 (±0.001) in training and 0.931 (±0.005) in testing; HGB reached a 
training Acc = 0.959 (±0.001) and a test Acc of 0.931 (±0.003). Based on overall precision, 
average Acc, the three classifiers obtained very similar prediction performance, i.e., 
SVM (93.4 %), MLP (93.2 %) and HGB (93.1 %). The non-parametric Kruskal Wallis 

Table 3. Performance of the classifiers support vector 
machine (SVM), multilayer perceptron (MLP) and 
histogram gradient boosting (HGB); metrics precision 
(P), sensitivity (S), score (F1) for each target class.

Model Class P S F1 AUCROC AUCP-S

SVM

V† 0.95 0.92 0.93 0.98 0.95
H¶ 0.95 0.96 0.96 0.99 0.97
A§ 0.89 0.90 0.90 0.97 0.91
SÞ 0.94 0.95 0.94 0.99 0.96

MLP

V 0.95 0.91 0.93 0.99 0.98
H 0.95 0.96 0.95 1.00 0.99
A 0.89 0.90 0.90 0.98 0.95
S 0.94 0.96 0.95 0.99 0.98

HGB
V 0.94 0.91 0.93 0.99 0.98
H 0.95 0.96 0.95 1.00 0.99
A 0.88 0.90 0.89 0.98 0.94
S 0.94 0.95 0.94 0.99 0.98

†V: tomato yellow leaf curl virus; ¶H: fungus Septoria 
lycopersici; §A: acarid Tetranychus urticae; ÞS: healthy leaf.
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test was applied to compare the response in terms of Acc performance of the three 
classifiers with five replications, and χ2 = 1.34, df = 2, p-value = 0.5117 was obtained and 
thus confirms that there were no significant differences in performance. 
Regarding the performance achieved by the three classifiers, Acc was more than 93 % 
and was acceptable for identifying the diseases described and under the conditions of 
acquisition of the leaf images. In terms of computation time, the algorithms SVM and 
HGB are faster than MLP, and SVM was more stable in training and in testing (Figure 
4B). SVM, MLP and HGB represent three different supervised machine learning 
paradigms. SVM is grounded in a process of quadratic optimization (Smola and 
Schölkop, 2004; Vapnik, 1995), MLP is a non-linear approximation model (Ramchoun 
et al., 2016), and HGB is based on a geometric approach of decision tree assembly 

Figure 3. Support vector machine (SVM) performance. A: confusion matrix; B: ROC curves; C: 
P-S curves, precision versus sensitivity. Target classes: tomato yellow leaf curl virus (V), fungus 
Septoria lycopersici (H), acarid Tetranychus urticae (A), and healthy leaf (S).

Figure 4. Comparison of overall accuracy (Acc) of the classifiers support vector machine (SVM), 
multilayer perceptron (MLP), and histogram gradient boosting (HGB). A. box plot of Acc; B. 
Graph of Acc in training and test for each partition k obtained by cross-validation.



Agrociencia 2023. DOI: https://doi.org/10.47163/agrociencia.v57i3.2462
Scientific article 13

(Friedman, 2001). The relationship precision versus computation time of a machine 
learning algorithm, relative to deep learning paradigms is highly superior. However, 
to increase the predictive capacity of the learning algorithms even more, the use of 
deep learning is a viable option with a higher computational cost (Saleem et al., 2019; 
Padol and Yadav, 2016).

Disease prediction in new leaf images 
The computational tool IDENTO v1.0 allows identification of diseases based on the 
optimal learning models used in this study. Identification comprises two stages. The 
first processes an RGB image to segment the leaf from the background (homogeneous). 
The second uses the segmented leaf to classify and identify the tomato disease. The 
classifiers SVM, MLP and HGB are activated from the Python platform and predict 
the disease. 
The predictive capability of IDENTO v1.0 was demonstrated with an unseen tomato 
leaf image, not used in the classifier training or test stages, from the database 
consulted for this study. The image was 256 x 256 pixels with three color channels, R, 
G, B (Figure 5A). The three classifiers coincided in indicating Septoria lycopersici as the 

Figure 5. Identification of three diseases on tomato leaves, based on the classifiers support 
vector machine (SVM), multilayer perceptron (MLP), and histogram gradient boosting (HGB). 
A: preprocessed tomato leaf image; B: identification with SVM; C: identification with MLP; D: 
identification with HGB. 
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causal agent of the symptoms. The difference in Acc global precision of the models 
causes a change in the distribution of the pixels by class. Class H with SVM obtained 
the largest number of predicted pixels, 60.5 % (Figure 5B), and MLP had the lowest 
number, 57.4 % (Figure 5C). Given that the difference in the proportions of pixels is 
small, the visualized outputs are very similar.
The tool incorporates heuristic decision rules obtained by trial and error for 
identification of the most relevant disease, based on the relative rate of pixels (TR), 
that is, the proportion of pixels of a class of the total number of pixels of the leaf. If TR 
is higher than 70 % for class S, the leaf is identified as healthy. If TR is higher than 35 % 
for class V, it is identified as a leaf diseased by TYLCV, and if TR is more than 17 % for 
class H, it is identified as a leaf diseased by Septoria lycopersici, while if TR is more than 
20 % for A, the disease is identified as caused by Tetranychus urticae. The thresholds of 
TR were defined in function of the analysis of multiple TR obtained when prediction 
was executed on the set of test images; overall precision in classification was more 
than 93 % (Kulkarni et al., 2021).

CONCLUSIONS
The three classifiers, support vector machine (SVM), multilayer perceptron (MLP), 
and histogram gradient boosting (HGB) reached an overall accuracy (Acc) of more 
than 93 % in predicting the target classes: tomato yellow leaf curl virus (V), the fungus 
Septoria lycopersici (H), the acarid Tetranychus urticae (A), and healthy leaves (S). The 
fungus Septoria lycopersici was classified with a value of F1 = 96 %, healthy leaves with 
F1 = 95 %, tomato yellow leaf curl virus with F1 = 93 %, and the acarid Tetranychus 
urticae with F1 = 90 %.
The computational tool IDENTO v1.0 we developed enables practical application 
of the machine learning classifiers evaluated for identification of the diseases in 
tomato leaves based on the proposed heuristic rules. The user guide of the software 
is available at https://github.com/JPAAPSEICOA/Manual-IA-IMAGE-PROV1.0. This 
study shows the importance of applying machine learning paradigms using digital 
images for disease identification. 
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