

In vitro EFFECT OF Trichoderma asperellum METABOLITES ON Fusarium oxysporum AND Fusarium equiseti

César Chacón¹, Emanuel Bojórquez-Quintal², Goretty Caamal-Chan³, Jairo Cristobal-Alejo⁴, Nancy Ruiz-Lau⁵*

¹Tecnológico Nacional de México. Instituto Tecnológico de Tuxtla Gutiérrez. Carretera Panamericana km 1080, Tuxtla Gutiérrez, Chiapas, Mexico. Z. C. 29050.

²Secretaría de Ciencia, Humanidades, Tecnología e Innovación. Laboratorio de Análisis y Diagnóstico del Patrimonio. El Colegio de Michoacán A. C. Cerro de Nahuatzen 85, Fracc. Jardines del Cerro Grande. La Piedad, Michoacán, Mexico. Z. C. 59370.

³Secretaría de Ciencia, Humanidades, Tecnología e Innovación. Centro de Investigaciones Biológicas del Noroeste S. C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, Mexico. Z. C. 23096.

⁴Tecnológico Nacional de México. Instituto Tecnológico de Conkal. Avenida Tecnológico s/n, Conkal, Conkal, Yucatán, Mexico. Z. C. 97345.

⁵Secretaría de Ciencia, Humanidades, Tecnología e Innovación. Tecnológico Nacional de México. Instituto Tecnológico de Tuxtla Gutiérrez. Carretera Panamericana km 1080, Tuxtla Gutiérrez, Chiapas, Mexico. Z. C. 29050.

* Author for correspondence: nruizla@secihti.mx; nancy.rl@tuxtla.tecnm.mx

ABSTRACT

The control of phytopathogenic fungi in agricultural crops requires the use of synthetic chemical fungicides, which have damaged the environment for decades. Biocontrol with microorganisms is one option to reduce their use, with the fungi of the Trichoderma genus standing out for their ability to interact with soil pathogens through different control mechanisms through antibiosis or production of substances harmful to other microorganisms. The objective of this work was to evaluate the biological control mechanism using Trichoderma asperellum antibiotics on the growth of Fusarium oxysporum and F. equiseti. Antibiosis bioassays were performed using the cellophane test (diffusible metabolite assay), the reverse plate technique (volatility assay), and poisoned foods (T. asperellum mycelium extracts and extracellular metabolite assays). The diffusible metabolites of T. asperellum presented the greatest inhibition of growth. The highest percentage of inhibition was observed on F. oxysporum in plates where T. asperellum developed for 72 h (>25 %), while F. equiseti inhibition was more effective in plates with 48 h (>40 %). In both species, no significant inhibitory effect was observed in volatility tests (>10 %), while extracellular metabolites showed no inhibition. In contrast, metabolites extracted from T. asperellum mycelium with ethyl acetate inhibited Fusarium between 18 and 40 %; with hexane, between 9 and 20 %; and with methanol, no inhibition was observed. The direct analysis in real-time mass spectrometry (DART-MS) analysis showed the presence of pyrones, fatty acids, alcohols, and carbohydrates in extracts and liquid culture of T. asperellum, which suggests that the control mechanism through antibiotics on *F. oxysporum* and *F. equiseti* is fungistatic.

Keywords: biocontrol, fungistatic, inhibition, mechanism, metabolite, phytopathogen.

Citation: Chacón C, Bojórquez-Quintal E, Caamal-Chan G, Cristobal-Alejo J, Ruiz-Lau N. 2025. In vitro effect of Trichoderma asperellum metabolites on Fusarium oxysporum and Fusarium equiseti.

Agrociencia. https://doi.org/10.47163/agrociencia.v59i2.3255

Editor in Chief: Dr. Fernando C. Gómez Merino

Received: June 24, 2024. Approved: February 21, 2025. **Published in Agrociencia:** March 24, 2025.

This work is licensed under a Creative Commons Attribution-Non- Commercial 4.0 International license.

INTRODUCTION

Soil-borne pathogens are a problem in agriculture worldwide, causing yield and quality losses in many crops (Madbouly and Abdelbacki, 2017). Among the pathogens that contribute the most to yield losses, the *Fusarium* genus stands out (Rivera-Jiménez *et al.*, 2018). *Fusarium oxysporum* causes wilting and subsequent death due to colonization of the roots and vascular bundles (Zheng *et al.*, 2022), while *F. equiseti* is associated with leaf spot, crown, and root rot, which causes seed deterioration and seedling infection (Gilardi *et al.*, 2017).

Capsicum is a crop generally associated with infection by phytopathogenic fungi of the *Fusarium* genus (Hami *et al.*, 2021), affecting its yield and commercial value. Currently, pathogenic fungi are effectively controlled with synthetic fungicides, but these are harmful to the environment (Shafique *et al.*, 2018) and toxic to farmers, communities, and consumers; in addition, the indiscriminate use of these fungicides results in residual toxicity due to accumulation (Pathak *et al.*, 2022). Therefore, there is a motivation to find fungicides that are safe, effective, and do not cause environmental damage (Wu *et al.*, 2023).

Biological control with antagonistic microorganisms has increased and is successful as a green, low-cost, and agroecological alternative to synthetic fungicides since they colonize the rhizosphere without leaving toxic residues, unlike chemical fungicides used in conventional agriculture to control soilborne pathogens (Palmieri *et al.*, 2022). Several microorganisms are used as biocontrol agents, including *Trichoderma*, a genus of avirulent hyperparasitic fungal species symbionts of plants that act against phytopathogenic fungi through several antagonistic mechanisms, including antibiosis, induction of plant defense, mycoparasitism, and competition for nutrients in the rhizosphere (Marques *et al.*, 2018).

The antibiosis process of *Trichoderma* spp. is based on the production of antibiotic chemical compounds associated with competition for nutrients in the rhizosphere (Contreras-Cornejo *et al.*, 2016). These fungi use antibiosis as a generalized strategy used for defense (Tyskiewicz *et al.*, 2022) and produce a spectrum of antifungal secondary metabolites that inhibit microbial growth without physical contact (Dawidziuk *et al.*, 2016), such as polyketides, gliotoxin, anthraquinones, pyrones, and peptaibols. Other metabolites associated with *Trichoderma* are enzymes that degrade the cell wall, siderophores, iron chelators, and volatile and non-volatile metabolites (Tyskiewicz *et al.*, 2022).

Trichoderma spp. inhibit phytopathogenic fungi *in vitro* by producing diffusible, volatile, and non-volatile secondary metabolites. Although most *Trichoderma* species produce toxic volatile metabolites that affect the growth and development of phytopathogens (Stracquadanio *et al.*, 2020), Sánchez-García *et al.* (2017) reported inhibition percentages of over 70 % of diffusible metabolites in two isolates of *T. asperellum* (Tri-3 and Tri-5) on three root phytopathogenic fungi in *Phaseolus vulgaris* L. (*F. oxysporum*, *F. verticillioides*, and *F. solani*). Likewise, Mishra *et al.* (2018) evaluated the ability of *T. asperellum* to produce volatile and non-volatile metabolites against *F. oxysporum* f. sp. *capsici* and

found that volatile metabolites are less effective in reducing mycelial growth (22 %) of the pathogen than non-volatile compounds, with inhibition percentages higher than 25 %.

There is evidence that metabolites produced by *T. asperellum* have an inhibitory effect on the development of phytopathogens in relation to their mode of action. *In vitro* studies could be a useful tool for identifying sources of antifungal compounds. Therefore, the objective of this work was to evaluate the biological control mechanism by antibiosis of *T. asperellum* metabolites on two pathogenic strains (*F. oxysporum* and *F. equiseti*).

MATERIALS AND METHODS

The biological control agent *Trichoderma asperellum* ITC17 Ta13-17 (GenBank number: MH015346) and the pathogen strains *Fusarium oxysporum* FCHJ-T6, *F. oxysporum* FCHA-T7, and *F. equiseti* FCHE-T8 (GenBank numbers MG020428, MG020429, and MG020433, respectively) were provided by Dr. Jairo Cristóbal Alejo and belong to the microbial collection of the Technological Institute of Conkal, Mexico. The *T. asperellum* strain was isolated from the root and stem crown of sweet pepper (*Capsicum annuum* L.), and *F. oxysporum* and *F. equiseti* were isolated from habanero pepper root (*C. chinense* Jacq.).

Diffusible metabolites assay

The assay was carried out in two stages using the cellophane test as described by Sánchez-García *et al.* (2017). Cellophane circles were placed on plates with potato dextrose agar medium (PDA, BD Bioxon, México), one per plate; then, a 6 mm diameter mycelial disc of *T. asperellum* (three-day culture) was centrally inoculated for growth on the cellophane and removed after 24, 48, and 72 h. To assess metabolite diffusion, the plates were incubated at 30±2 °C in the dark. A sterile filter paper disk (6 mm diameter) (WhatmanTM, Grade 1) was used as a control.

In the second stage, a 6 mm diameter mycelial disc with *F. oxysporum* FCHJ-T6, *F. oxysporum* FCHA-T7, and *F. equiseti* FCHE-T8 (seven-day culture in PDA medium) was placed on the central position where the antagonist was inoculated. The plates were incubated at 30±2 °C in the dark, and radial growth (mm) was recorded every 24 h until the control reached the edge of the plate. Three repetitions were established for each treatment and a control. The diameter was measured with a ruler, and the percentage inhibition of radial growth (PIRG) of the pathogen was calculated according to the following formula:

$$PIRG = \frac{(D1 - D2)}{D1} \times 100$$

where *D*1 is the diameter of the pathogen on the control plate and *D*2 is the diameter of the pathogen on the plate with *T. asperellum*.

Volatility assay

The effect of volatile metabolites of *T. asperellum* was evaluated by the inverted plate technique as reported by Toghueo *et al.* (2016). In different Petri dishes, 6-mm mycelial discs (one per plate) of *T. asperellum* or *Fusarium* sp. were inoculated, taken from cultures of two and seven days in PDA medium, respectively; three replicates were established for each *Trichoderma-Fusarium* interaction and a control. Subsequently, the bases of both plates were placed opposite, sealed with adhesive tape and plastic film, and incubated at 30±2 °C in the dark. As a control, the base of the Petri dish inoculated with the pathogen was placed opposite another with a sterile filter paper disc. The pathogen was placed on top to avoid interference by *T. asperellum* spores. The diameters of the *Fusarium* colonies were measured every 24 h for five days (all measurements were taken in the same box) (Chen *et al.*, 2016). The inhibition percentage was calculated using the following equation:

$$I = \frac{C - T}{C} \times 100$$

where *C* is the mycelial growth of the pathogen in the control plate, *T* is the mycelial growth in the tests with *Trichoderma*, and *I* represents the percentage of mycelial growth that has been inhibited.

Trichoderma asperellum mycelium extracts assay

Mycelium extracts were obtained as reported by Ibrahim *et al.* (2017), with some modifications. *Trichoderma asperellum* was cultivated in potato dextrose broth (PDB) at 30±2 °C for 30 days in the dark. Under sterile conditions, the culture medium with five days of growth was filtered with sterile gauze to recover the mycelium, which was then dried in an incubator at room temperature for eight days. Dried mycelial mats were ground, extracted with 200 mL hexane with shaking for 24 h at room temperature, and filtered through Whatman no. 1 paper. The solid residue was extracted again with hexane as described above. The filtrates were combined and evaporated to obtain the hexane extract. The solid residue was extracted with ethyl acetate and methanol, respectively, as described for the hexane extract.

For the test, $55 \, \mathrm{mm}$ Petri dishes were used with PDA medium added with $1000 \, \mu \mathrm{g} \, \mathrm{mL}^{-1}$ of the extracts. The plates were inoculated by placing a *Fusarium* sp. mycelial disk from a seven-day culture in PDA medium in the center. Petri dishes without organic extract and with sterile distilled water (negative control) and dimethyl sulfoxide (DMSO ACS reagent, Sigma-Aldrich, France) (solvent test) were used as controls. Three replicates were used for each treatment. The plates were incubated at 30 ± 2 °C and the colony diameter was measured with a ruler every 24 h until the control treatment reached the edge of the plate. The percentage of growth inhibition was calculated as described in the previous assay.

Extracellular metabolites assay

Flasks of 250 mL volume containing 100 mL of sterile PDB were inoculated with mycelial plugs taken from the edge of a seven-day culture of *T. asperellum* in PDA medium. Each flask was inoculated with three discs (6 mm) and incubated without shaking at 30±2 °C in the dark for seven days (Anees *et al.*, 2018). For the elimination of spores, the liquid medium was filtered through a cloth, sterile gauze, and Whatman paper, and centrifuged twice at 4500 rpm for 25 min (Hermle LabortechnikTM, Germany). A syringe filter (LINKTORTM syringe filter, 25 mm diameter, 0.22 μm pore size) to obtain sterile culture liquid (Marques *et al.*, 2018).

For the assay with extracellular metabolites, the culture filtrate was added to the sterile PDA medium in concentrations of 0, 5, 10, 15, 20, and 25 % (v/v) (Mishra *et al.*, 2016; Petrisor *et al.*, 2017; Anees *et al.*, 2018; Mishra *et al.*, 2018) using PDA plates. These were inoculated in the center with a 6 mm diameter mycelial disc of the pathogen and incubated at 30±2 °C until the fungus reached the edge of the plate in the control treatment. The trial treatments were completely randomized with three replicates. The radial growth of the phytopathogens was measured every 24 h with a ruler. The percentage inhibition of mycelial growth in relation to the growth of the controls was calculated as previously described.

Analysis of T. asperellum mycelium extract and sterile culture liquid

Two samples obtained from the culture of *T. asperellum* were analyzed and identified. The extract of dry mycelium was obtained with hexane and ethyl acetate. Samples were analyzed in the form of crude extract and diluted to a concentration of 1 mg mL⁻¹ from the crude-dry extract in their corresponding extraction solvent (HPLC grade). The 1 mg mL⁻¹ aliquots were kept refrigerated until analysis.

Direct analysis in real-time mass spectrometry (DART-MS) was carried out on a JMS-T100LP AccuTOF LC-PLUS spectrometer (JEOL, Tokyo, Japan) with a DART SVP100 ion source (Ionsense, Saugus, MA, USA). The DART ion source was operated with helium for analysis and nitrogen for standard mode; gas temperature was 300 °C, inlet pressure was 0.55 MPa, and voltage was ± 600 V for positive and negative ion modes. The acquisition of the mass spectra was recorded with the Mass Center System Version 1.5.0k software in a mass range of m/z 50–1000 Da. Each sample was detected at least three to five times over 1–4 min. The analysis of the *T. asperellum* extracts at 1 mg mL⁻¹ was carried out by placing 10 μ L of volume in a capillary tube; subsequently, the capillary tube was placed between the helium stream from the DART ionization source and the vacuum interface to obtain DART mass spectra. Crude extracts were directly analyzed on DART-MS; the extract was taken with a capillary tube, and the sample adhered to the walls of the glass tube was analyzed (Procacci *et al.*, 2021).

Statistical analysis

The data was analyzed using a completely randomized design of experiments with an analysis of variance (ANOVA) and Tukey's test at 95 % confidence using the Centurion XVII software (Statgraphics Technologies, VA, USA).

RESULTS AND DISCUSSION

In vitro antagonism of T. asperellum against Fusarium spp. by antibiosis

In the assay with diffusible metabolites, it was observed that the effect on the mycelial growth of the *Fusarium* strains was different in each treatment (Ta-24, Ta-48, and Ta-72). Inhibition was greater compared to the control at 192 h for *F. oxysporum* and at 216 h for *F. equiseti*, with Ta72 and Ta48 being the best treatments, respectively (Table 1). In an antibiosis assay, Sánchez-García *et al.* (2017) reported that *T. asperellum* inhibited radial growth (>75 %) of five *Fusarium* strains (two of *F. solani*, two of *F. oxysporum*, and one of *F. verticilloides*). In this work, growth inhibition was >25 % (192 h) in *F. oxysporum* and >40 % (216 h) in *F. equiseti*; this growth inhibition in the assay varied over time between strains, at days 8 and 9, respectively.

Trichoderma spp. have antagonistic activity against phytopathogens through multiple mechanisms that include mycoparasitism, competition for space and nutrients, induction of systemic resistance in plants, and antibiosis (Li *et al.*, 2018). Regarding antibiosis, *Trichoderma* spp. produce secondary metabolites in the culture medium with potential antimicrobial activity. The identification and *in vitro* evaluation of these molecules against pathogens is important to identify strains with biocontrol potential. Different species of the *Trichoderma* genus can produce similar molecules (Morais *et al.*, 2022) and different isolates of the same species can produce different secondary metabolites at various concentrations, which leads to the individuality of the species (Mesa-Vanegas *et al.*, 2019).

The growth inhibition of *F. equiseti* depended on the development time of the biological control agent on the plate prior to culturing the pathogen, since the Ta48 treatment was more efficient with this strain than Ta72. The inhibition effect is due to the excretion of metabolites by *T. asperellum*, causing antibiosis (production of harmful substances for another organism) and inhibiting the growth of the pathogen. Metabolites excreted by antagonist agents may be volatile or non-volatile. In this case, *Trichoderma* spp. can produce both (Olmedo and Casas-Flores, 2014). The results demonstrated a fungistatic effect (that which prevents their growth) in the *Fusarium* strains caused by antibiosis (Table 1) through the synthesis and diffusion of *Trichoderma* metabolites in the plates with PDA medium.

The inhibitory effect of volatile metabolites produced by *T. asperellum* using the inverted plate technique has previously been reported (Morales-Rodríguez *et al.*, 2018). However, in the volatility test, the results did not show statistical differences in the interactions between *T. asperellum* and *F. oxysporum* FCHA-T7 (<7 %) and *T. asperellum* and *F. equiseti* FCHE-T8 (<8 %) compared to the control.

For the poisoned food test, fungal extracts were obtained from *T. asperellum* mycelium using hexane (Hx-Ta), ethyl acetate (AcEt-Ta), and methanol (Me-Ta); these were tested at $1000 \,\mu g \, mL^{-1}$ (ppm) to evaluate their effect on the growth of *F. oxysporum* and *F. equiseti*, observing inhibition values less than 50 %. The AcEt-Ta extract presented the greatest growth inhibition on *F. oxysporum* (30.7 % for FCHJ-T6 and 18.1 % for FCHA-T7) and *F. equiseti* (38.1 %) at 120 and 168 h, respectively, followed by the Hx-

Table 1. Radial growth inhibition of *Fusarium oxysporum* FCHJ-T6, *F. oxysporum* FCHA-T7, and *F. equiseti* FCHE-T8 by *Trichoderma asperellum* in the diffusible metabolites[†] assay.

Treatment	F. oxysporum FCHJ-T6 (192	F. oxysporum FCHA-T7	F. equiseti FCHE-T8 (216 h)
TST	0.0±0.0 b	0.0±0.0 b	0.0±0.0 d
	0.0±0.0 <i>b</i>	0.010.0 b	0.0±0.0 d
Ta-24	0.7±2.0 b	1.2±0.5 b	5.9±0.5 c
	0.7±2.0 b	1.2±0.5 b	3.9±0.5 €
Ta-48			
	12.9±1.7 ab	12.8±1.5 ab	41.1±1.8 a
Ta-72			
	25.4±7.3 a	26.2±5.8 a	15.2±0.2 b

[†]The values are presented as percentages of inhibition of radial growth and correspond to the average of three repetitions \pm standard error. Values with different letters in the same column are statistically different ($p \le 0.05$). TST: control; Ta-24, Ta-48, and Ta-72: treatments in which *T. asperellum* grew on cellophane for 24, 48, and 72 h, respectively.

Ta extract (9.3–18.6 %), while Me-Ta did not show a significant inhibitory effect in any strain compared to the control. The effect of Hx-Ta and AcEt-Ta on *F. oxysporum* was fungistatic; in contrast, Me-Ta promoted the mycelial growth of the phytopathogen while the inhibitory effect of the solvent could be dismissed (Table 2).

Table 2. Inhibition of radial growth of *Fusarium oxysporum* FCHJ-T6, *F. oxysporum* FCHA-T7, and *F. equiseti* FCHE-T8 by *Trichoderma asperellum* in the fungal mycelium extracts test[†].

Treatment	F. oxysporum FCHJ-T6	F. oxysporum FCHA-T7	F. equiseti FCHE-T8
	(120	J n)	(168 h)
H ₂ O (-)			
	0.0±0.0 c	0.0±0.0 b	0.0±0.0 cd
DMSO			
	-2.7±0.0 d	3.0±1.3 b	0.9±0.4 c
Нх-Та			
	9.3±0.0 b	15.5±0.4 a	18.6±0.9 b
AcEt-Ta			
	30.7±0.0 a	18.1±0.4 a	38.1±1.2 a
Me-Ta			
	-7.1±0.4 e	-5.2±0.9 c	-3.1±0.4 d

 † The values are presented as percentages of inhibition of radial growth, correspond to the average of three repetitions \pm standard error. Values with different letters in the same column are statistically different ($p \le 0.05$). H₂O (-): sterile distilled water (negative control); DMSO: dimethyl sulfoxide (solvent test): Hx-Ta: hexane extract; AcEt-Ta: ethyl acetate extract and Me-Ta: methanolic extract.

Ibrahim *et al.* (2017), when evaluating the antifungal activity of crude extracts of ethyl acetate (AcET) of two isolates of *T. longibrachiatum* (MF1 and MF5) and two fractions of these extracts partitioned with 90 % hexane and methanol and applied at 1000 μ g mL⁻¹, observed that the crude extract of ethyl acetate and the methanolic fraction of both isolates had less than 50 % inhibition on the growth of *F. oxysporum*. In contrast, the hexane fraction of *T. longibrachiatum* MF1 was slightly active against *F. oxysporum*, while the hexane fraction of *T. longibrachiatum* MF5 was inactive against the pathogen. Therefore, this study and other reports suggest that the inhibitory effect of *Trichoderma* metabolites contained in the organic extracts may vary from one microorganism to another.

In the test with extracellular metabolites of the *T. asperellum* growth medium, none of the treatments with 0, 5, 10, 15, 20, and 25 % (v/v) of the filtrate in PDA medium inhibited the mycelial growth of the three *Fusarium* strains evaluated.

DART-MS analysis of mycelium extracts and sterile liquid culture of *T. asperellum* The DART-MS analysis of the organic extracts allowed the identification of possible constituent compounds of diverse chemical nature. The hexane extract (Hx-Ta) produced signals associated with pyrans (1), pyrones (2 and 3), carboxylic acids (4), alcohols (5), fatty acids (6), and terpenes (7 and 8) (Table 3). The peaks associated with pyrones and fatty acids had the highest intensity and corresponded to the adducts [M+O+H]⁺ and [M+OH]⁻ and to the anion [M-H]⁻.

The ethyl acetate (AcEt-Ta) extract contained 12 chemical groups, including furans (1), pyrans (2), pyrones (3, 4, and 5), carboxylic acids (6), alcohols (7), fatty acids (8 and 9), terpenes (10), polycyclic heteroarenes (11), and α -amino acid derivatives (12). The signals associated with fatty acids, pyrones, and alcohols presented the highest intensity and corresponded to the anion [M-H]⁻ and the adducts [M+O+H]⁺ and [M+OH]⁻, respectively (Table 4).

In this study, the secondary metabolites extracted from *T. asperellum* mycelium with hexane and ethyl acetate caused inhibition of *Fusarium* spp. The signals with the highest intensity detected by DART-MS in both extracts corresponded to pyrone and fatty acid metabolites (Tables 3 and 4), while, in the ethyl acetate extract, a high-intensity peak attributed to a long-chain alcohol was detected (Table 4), which could explain the greater inhibitory activity of the AcEt extract on *Fusarium* spp. compared to the hexane extract. Sakpetch *et al.* (2018) had reported the presence of (2) 6-pentyl-2H-pyran-2-one (Table 3) in the hexane extract of the filtered liquid medium of *T. asperellum* and (1) 5-hydroxymethyl, 2-furancarboxaldehyde, (2) 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, and (9) 9,12-octadecenoic acid (Table 4) in the ethyl acetate extract. These compounds were associated with antimicrobial and antifungal activity. The abundance and variety of secondary metabolites identified in the mycelium fungal extracts indicate that the *T. asperellum* strain is capable of producing metabolites with biological activity. Among the three extracts evaluated, the presence of pyrones and fatty acids was represented with greater intensity in the hexane and ethyl acetate

Table 3. Ions and adducts detected in the hexane extract of *Trichoderma asperellum* mycelium analyzed in mode (+) and (-) by direct analysis in real time mass spectrometry (DART-MS).

Suggested metabolite	Crude and dry extract [Ion]/(m/z)		Diluted extract (1 mg mL ⁻¹) [Ion]/(m/z)	
metabolite	Mode (+)	Mode (-)	Mode (+)	Mode (-)
(1) 4H-pyran-4-one, 2,3-dihydro-3,5- dihydroxy-6-methyl-		[M+Cl] ⁻ / (179.068)		
(2) 6-pentyl-2H- pyran-2-one	†[M+O+H] ⁺ / (183.127)		†[M+O+H]†/ (183.133)	
(3) 6-pent-1-enylpyran- 2-one		†[M+OH] ⁻ / (181.086)	[M+H] ⁺ / (165.117)	[M+OH] ⁻ / (181.083) [2M-H] ⁻ / (327.262)
(4) Benzeneacetic acid		[2M-H] ⁻ / (271.121)		
(5) 1-hydroxyheptadecane		[M-H] ⁻ / (255.249)		[M-H] ⁻ / (255.248)
(6) 9,12-octadecenoic acid				†[M-H] ⁻ / (279.250)
(7) (3aR,4R,7R)-1,4- dimethyl-7-prop-1-en- 2-yl-1,2,3,3a,4,5,6,7- octahydroazulene	[M+O+H]+/ (221.240)			
(8) 2,6,10,15,19,23- hexamethyl-2,6,10,14, 18,22-tetracosahexaene		[M-H] ⁻ / (409.234)		

[†]Most abundant ions in the DART-MS spectrum. The sample was detected at least three times. The metabolites were observed in the majority of the DART-MS spectra. m/z: mass to charge ratio; the letter M indicates the molecular weight of the metabolite.

extracts (Tables 3 and 4), as was the case of 6-pentyl-2H-pyran-2-one, which has been reported to have antimicrobial activity (Morais *et al.*, 2022). According to the results, there is variability in the antimicrobial activity of this compound, since the fungal strains showed different degrees of sensitivity, which is dependent on the concentration of pyrone (Ismaiel and Ali, 2017). Given this evidence, and based on the inhibition results observed in the present study, it is suggested that the different secondary metabolites present in each extract and their concentrations exhibit various levels of antibiotic activity.

Table 4. Ions and adducts detected in the ethyl acetate extract of *Trichoderma asperellum* mycelium analyzed in mode (+) and (-) by direct analysis in real time mass spectrometry (DART-MS).

Suggested	Crude and dry extract [Ion]/(m/z)		Diluted extract (1 mg mL ⁻¹) [Ion]/(m/z)	
metabolite	Mode (+)	Mode (-)	Mode (+)	Mode (-)
(1) 5-hydroxymethyl, 2-furancarboxaldehyde-			[M+H] ⁺ / (127.069)	
(2) 4H-pyran-4-one, 2,3-dihydro-3,5- dihydroxy-6-methyl-		[M+OH] ⁻ / (161.055)	[M+H] ⁺ / (145.087)	[M+OH] ⁻ / (161.055)
(3) 6-pent-1- enylpyran-2-one			[M+H] ⁺ / (165.121, 165.124)	
(4) 6-amyl-alpha- pyrone			†[M+O+H] ⁺ / (183.137, 183.140)	[M-H+O ₂] ⁻ / (197.043)
(5) 2H-pyran-2-one, tetrahydro-4-hydroxy -4-methyl-		[M-H+O ₂] ⁻ / (161.055)	[M+O+H] ⁺ / (147.104)	[M-H+O ₂] ⁻ / (161.055) [2M-H] ⁻ / (259.071)
(6) 2-furancarboxylic acid			[M+O+H] ⁺ / (129.087)	[M+OH] ⁻ / (129.026) [2M-H] ⁻ / (223.094)
(7) 1-hydroxyheptadecane				†[M+OH] ⁻ / (273.092)
(8) n-octadecanoic acid		[M-H] ⁻ / (283.279)		
(9) 9,12-octadecenoic acid		†[M-H] ⁻ / (279.251)		
(10) (3R,3aS,7aR)-1,4-dimethyl-7-prop-1-en-2-yl-1,2,3,3a,4,5,6,7-octahydroazulene		[M+O ₂] ⁻ / (312.249)	[M+H] ⁺ / (205.130)	
(11) 1H-indole				
(12) Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-		M ⁻ / (117.027)		[2M-H] ⁻ / (307.205)

 $^{^{\}dagger}$ Most abundant ions in the DART-MS spectrum. The sample was detected at least three times. The metabolites were observed in the majority of the DART-MS spectra. m/z: mass to charge ratio; the letter M indicates the molecular weight of the metabolite.

CONCLUSIONS

Diffusible metabolites extracted with hexane and ethyl acetate from *Trichoderma* asperellum mycelium showed a fungistatic effect on the growth of *Fusarium oxysporum* and *F. equiseti*. On the contrary, the volatile, extracellular, and methanol-extracted metabolites of *Trichoderma* mycelium did not show a significant inhibitory effect on growth. This suggests that these compounds play a role as a signal or stimulus during pathogen-biological control agent confrontation and that the antibiosis mechanism. Inhibition values lower than 50 % could be synergistically associated with other antagonistic mechanisms of *T. asperellum*, such as competition for space and nutrients.

ACKNOWLEDGEMENTS

To the Secretariat of Science, Humanities, Technology, and Innovation (SECIHTI) for the scholarship awarded to César Chacón (support number 715167). To Luis M. Rojas-Abarca for the technical support for the analysis of the extracts in DART-MS (Laboratory for the Analysis and Diagnosis of Heritage, El Colegio de Michoacán A. C.).

REFERENCES

- Anees M, Azim R, Ur Rehman S, Jamil M, El Hendawy SE, Al-Suhaiban NA. 2018. Antifungal potential of *Trichoderma* strains originated from north western regions of Pakistan against the plant pathogens. Pakistan Journal of Botany 50 (5): 2031–2040.
- Chen JL, Liu K, Miao CP, Sun SZ, Chen YW, Xu LH, Guan HL, Zhao LX. 2016. Salt tolerance of endophytic *Trichoderma koningiopsis* YIM PH30002 and its volatile organic compounds (VOCs) allelopathic activity against phytopathogens associated with *Panax notoginseng*. Annals of Microbiology 66 (3): 981–990. https://doi.org/10.1007/s13213-015-1171-5
- Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J. 2016. Ecological functions of *Trichoderma* spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiology Ecology 92 (4): fiw036. https://doi.org/10.1093/femsec/fiw036
- Dawidziuk A, Popiel D, Kaczmarek J, Strakowska J, Jedryczka M. 2016. Optimal *Trichoderma* strains for control of stem canker of brassicas: Molecular basis of biocontrol properties and azole resistance. BioControl 61 (6): 755–768. https://doi.org/10.1007/s10526-016-9743-2
- Gilardi G, Pintore I, Gullino ML, Garibaldi A. 2017. Occurence of *Fusarium equiseti* as a contaminant of *Diplotaxis tenuifolia* seeds. Journal of Plant Pathology 99 (1): 245–248. https://doi.org/10.4454/jpp.v99i1.3830
- Hami A, Rasool RS, Khan NA, Mansoor S, Mir MA, Ahmed N, Masoodi KZ. 2021. Morphomolecular identification and first report of *Fusarium equiseti* in causing chilli wilt from Kashmir (Northern Himalayas). Scientific Reports 11 (1): 3610. https://doi.org/10.1038/s41598-021-82854-5
- Ibrahim M, Kaushik N, Sowemimo A, Chhipa H, Koekemoer T, van de Venter M, Odukoya OA. 2017. Antifungal and antiproliferative activities of endophytic fungi isolated from the leaves of *Markhamia tomentosa*. Pharmaceutical Biology 55 (1): 590–595. https://doi.org/10.1080/138 80209.2016.1263671

- Ismaiel AA, Ali DMI. 2017. Antimicrobial properties of 6-pentyl-α-pyrone produced by endophytic strains of *Trichoderma koningii* and its effect on aflatoxin B1 production. Biologia 72 (12): 1403–1415. https://doi.org/10.1515/biolog-2017-0173
- Li YT, Hwang SG, Huang YM, Huang CH. 2018. Effects of *Trichoderma asperellum* on nutrient uptake and *Fusarium* wilt of tomato. Crop Protection 110: 275–282. https://doi.org/10.1016/j.cropro.2017.03.021
- Madbouly AK, Abdelbacki AMM. 2017. Biocontrol of certain soilborne diseases and promotion of growth of *Capsicum annuum* using biofungicides. Pakistan Journal of Botany 49 (1): 371–378.
- Marques E, Martins I, de Mello SCM. 2018. Antifungal potential of crude extracts of *Trichoderma* spp. Biota Neotropica 18 (1): e20170418. https://doi.org/10.1590/1676-0611-BN-2017-0418
- Mesa-Vanegas AM, Marín A, Calle-Osorno J. 2019. Secondary metabolites in *Trichoderma* spp. and its agricultural biotechnological applications. Actualidades Biológicas 41 (111): 32–44. https://doi.org/10.17533/udea.acbi.v41n111a02
- Mishra A, Dixit S, Ratan V, Srivastava M, Trivedi S, Srivastava YK. 2018. Identification and *in silico* screening of biologically active secondary metabolites isolated from *Trichoderma harzianum*. Annals of Phytomedicine 7 (1): 78–86. https://doi.org/10.21276/ap.2018.7.1.9
- Mishra N, Khan SS, Krishna Sundari S. 2016. Native isolate of *Trichoderma*: a biocontrol agent with unique stress tolerance properties. World Journal of Microbiology and Biotechnology 32: 130. https://doi.org/10.1007/s11274-016-2086-4
- Morais EM, Silva AAR, de Sousa FWA, de Azevedo IMB, Silva HF, Santos AMG, Júnior JEAB, de Carvalho CP, Eberlin MN, Porcari AM, Araújo FD da S. 2022. Endophytic *Trichoderma* strains isolated from forest species of the Cerrado-Caatinga ecotone are potential biocontrol agents against crop pathogenic fungi. PLOS ONE 17 (4): e0265824. https://doi.org/10.1371/journal.pone.0265824
- Morales-Rodríguez C, Bastianelli G, Aleandri MP, Chilosi G, Vannini A. 2018. Application of *Trichoderma* spp. complex and biofumigation to control damping-off of *Pinus radiata* D. Don caused by *Fusarium circinatum* Nirenberg and O'Donnell. Forests 9 (7): 421. https://doi.org/10.3390/f9070421
- Olmedo VM, Casas-Flores S. 2014. Molecular mechanisms of biocontrol in *Trichoderma* spp. and their applications in agriculture. *In* Gupta V, Schmoll M, Herrera-Estrella A, Upadhyay R, Druzhinina I, Tuohy M. (eds.), Biotechnology and Biology of *Trichoderma*. Elsevier: Amsterdam, Netherlands, pp: 429–453. https://doi.org/10.1016/B978-0-444-59576-8.00032-1
- Palmieri D, Ianiri G, del Grosso C, Barone G, de Curtis F, Castoria R, Lima G. 2022. Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae 8: 577. https://doi.org/10.3390/horticulturae8070577
- Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, Dewali S, Yadav M, Kumari R, Singh S, *et al.* 2022. Current status of pesticide effects on environment, human health and its eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology 13: 962619. https://doi.org/10.3389/fmicb.2022.962619
- Petrisor C, Paica A, Constantinescu F. 2017. Effect of secondary metabolites produced by different *Trichoderma* spp. isolates against *Fusarium oxysporum* f. sp. *radicis-lycopersici* and *Fusarium solani*. Scientific Papers Series B Horticulture 61: 407–411.
- Procacci S, Bojórquez-Quintal E, Platamone G, Maccioni O, Vecchio VL, Morreale V, Alisi C, Balducchi R, Bacchetta L. 2021. *Opuntia ficus-indica* pruning waste recycling: Recovery and

- characterization of mucilage from cladodes. Natural Resources 12 (4): 91–107. https://doi. org/10.4236/nr.2021.124008
- Rivera-Jiménez MN, Zavaleta-Mancera HA, Rebollar-Alviter A, Aguilar-Rincón VH, García-de los Santos G, Vaquera-Huerta H, Silva-Rojas HV. 2018. Phylogenetics and histology provide insight into damping-off infections of 'Poblano' pepper seedlings caused by *Fusarium* wilt in greenhouses. Mycological Progress 17 (11): 1237–1249. https://doi.org/10.1007/s11557-018-1441-2
- Sakpetch P, H-Kittikun A, Kuwahara Y, Komeda H, Asano Y. 2018. Isolation of indigenous antagonistic microorganism to inhibit *Rigidoporus microporus* and other plant pathogens and analysis of the bioactive compounds. Biological Control 124: 53–60. https://doi.org/10.1016/j. biocontrol.2018.01.007
- Sánchez-García BM, Espinosa-Huerta E, Villordo-Pineda E, Rodríguez-Guerra R, Mora-Avilés MA. 2017. *Trichoderma* spp. native strains molecular identification and *in vitro* antagonistic evaluation of root phitopathogenic fungus of the common bean (*Phaseolus vulgaris* L.) cv. Montcalm. Agrociencia 51 (1): 63–79.
- Shafique S, Shafique S, Ahmad A. 2018. Biochemical and molecular screening of varieties of chili plants that are resistant against *Fusarium* wilt infection. European Journal of Microbiology and Immunology 8 (1): 12–19. https://doi.org/10.1556/1886.2017.00031
- Stracquadanio C, Quiles JM, Meca G, Cacciola SO. 2020. Antifungal activity of bioactive metabolites produced by *Trichoderma asperellum* and *Trichoderma atroviride* in liquid medium. Journal of Fungi 6 (4): 263. https://doi.org/10.3390/jof6040263
- Toghueo RMK, Eke P, Zabalgogeazcoa Í, de Aldana BRV, Nana LW, Boyom FF. 2016. Biocontrol and growth enhancement potential of two endophytic *Trichoderma* spp. from *Terminalia catappa* against the causative agent of common bean root rot (*Fusarium solani*). Biological Control 96: 8–20. https://doi.org/10.1016/j.biocontrol.2016.01.008
- Tyskiewicz R, Nowak A, Ozimek E, Jaroszuk-Sciseł J. 2022. *Trichoderma*: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences 23 (4): 2329. https://doi.org/10.3390/ijms23042329
- Wu PH, Chang HX, Shen YM. 2023. Effects of synthetic and environmentally friendly fungicides on powdery mildew management and the phyllosphere microbiome of cucumber. PLOS ONE 18 (3): e0282809. https://doi.org/10.1371/journal.pone.0282809
- Zheng J, Wang L, Hou W, Han Y. 2022. Fusarium oxysporum associated with Fusarium wilt on Pennisetum sinese in China. Pathogens 11 (9): 999. https://doi.org/10.3390/pathogens11090999

